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INTRODUCTION 
 

Delivery Platforms Building on the strengths of complex 

coacervation for encapsulation, several examples of 

ionically cross-linked colloidal polyelectrolyte (PE) 

coacervates-mostly conceived for biomedical 

applications-are reported in the literature. More recently, 

systems of complex coacervation have been explored for 

drug delivery using such naturally occurring polymers as 

alginate, chitosan, and heparin.
[1,2]

 For instance, 

chitosan/nucleic acid polyplexes were designed for the in 

vitro delivery of RNA or DNA in mammalian cells.
[3-5]

 

Similarly, hybrid PEGylated nanoparticles formed via 

the complex coacervation mechanism have been shown 

to enhance the in vivo gene transfection efficiency 

compared with traditional carriers. On the other hand, 

protein encapsulation via polypeptide complex 

coacervation has been recently reported with the aim of 

delivering protein therapeutics.
[6]

 The ability of complex 

coacervates to contain high concentrations of 

aggregation-free and fully active proteins has been 

exploited in the formulation and delivery of growth 

factors and monoclonal antibodies. Li et al.
[7]

 showed the 

use of zein−chitosan complex coacervate particles in the 

slow release of curcumin. Zein−chitosan complex 

coacervation was studied by Ren et al. 8 to investigate 

the effect of ultrasound frequency in the encapsulation of 

resveratrol. Thermodynamics and wetting kinetics of 

zein coacervate was studied by Li et al.
[9]

 Their study 

also revealed the formation of zein coacervate in a 

water/propylene glycol solvent and its ability to 

encapsulate limonene. Injectable hydrogel coacervate 

was used by Lee et al.
[10]

 for the delivery of anticancer 

drug bortezomib. Huei et al.
[11]

 have reported iron cross-

linked carboxymethyl cellulose complex coacervate 

beads for the sustained release of ibuprofen drug. 

Chenglong et al.
[12]

 reported a dextran-based coacervate 

nanodroplet as potential gene carriers for efficient cancer 

therapy. A water-soluble starch derivative anionic and 

cationic polymer that undergoes nanoparticle formation 

via coacervation was reported by Barthold et al.
[13]

 The 

group discussed the potential use of the nanoparticles in 

pulmonary delivery of protein/peptides.   

 

From a delivery standpoint, bulk and hydrogel-like 

coacervate-based materials are typically the most useful 

in circumstances that allow for bolus-style delivery (i.e., 

direct application or injection of the material to the site 

of interest). For example, coacervate-based hydrogels 

composed of alginate and chitosan were shown to 

enhance the proliferation of cells in vitro while 

accelerating healing efficiency and wound closure in a 

rat model.
[14]

 In another series of reports, the cationic 

polymer poly(ethylene argininylaspartate diglyceride) 

(PEAD) was used in concert with the glycosaminoglycan 

heparin to form coacervate-based delivery vehicles that 

take advantage of the strong binding affinity between 

heparin and various growth factors to enable cargo 

encapsulation and protection. Applications included the 

use of heparin-binding epidermal growth factor-like 

growth factor (HB- EGF) to accelerate wound healing,
[15]

 

fibroblast growth factor-2 (FGF2) to enhance 

angiogenesis in both surface wounds and after 

myocardial infarction (Figure 28),
[16,17]

 stromal cell-

derived factor (SDF)-1a for vascular regeneration,18 

bone morphogenetic protein-2 for stem cell 

differentiation and bone formation,19 nerve growth 

factor (NGF) for nerve regeneration,
[20]

 and the anti- 

inflammatory cytokine interleukin-10 (IL-10).
[21]

 

 

While exploring the efficiency of coacervates in drug 

delivery, a very interesting work was carried by Lim et 

al. 22 They showed that a Humboldt squid beak-derived 

biomimetic peptide coacervate can be used for 

encapsulating insulin with high efficiency along with its 
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ABSTRACT 
 

Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of 

small molecule drugs and proteins. Researchers have focused a lot to explore the application of coacervates in the 

field of drug delivery as well as in proto cellular biology; hence the present review is timely. Chemically modified 

coacervates used in drug delivery research are discussed critically to evaluate the usefulness of these systems in 

delivering bioactive molecules.  
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controlled release. Chitosan-based coacervates for 

propolis encapsulation and its release and cytotoxic 

effect was reported by Sato et al.
[23]

  

 

The lack of organic solvents in coacervation has added 

benefits in the context of drug delivery, beyond those 

related to the gentle encapsulation of biomolecules. Drug 

delivery platforms typically address multiple challenges, 

including (i) protection and/or isolation of the cargo, (ii) 

enabling targeted delivery and uptake into the cells or 

tissues of interest, and (iii) controlled release of 

therapeutics over time. A variety of reports have 

demonstrated the efficacy of coacervation as the basis of 

a drug delivery platform, taking advantage of the flexible 

and modular capabilities of charge-driven self-assembly 

to address each of these challenges. Reports of 

coacervate-based platforms for gene delivery include 

bulk complexes,
[24-27]

 and micellar,
[28-34]

 systems for the 

delivery of plasmid DNA, microRNA,
[29]

 and 

siRNA28(small interfering RNA). Specific diseases 

targeted by these approaches include atherosclerosis,
[29]

 

and cancer.
[34]

  

 

The issue of cargo protection is often coupled with 

strategies to facilitate cellular uptake. For instance, the 

vast majority of non-viral strategies for gene delivery 

rely on electrostatic complex formation between the 

negatively-charged DNA or RNA and a positively-

charged carrier polymer, surfactant, or lipid.
[35-38]

 Such 

complexation helps to protect against attack from 

nucleases.
[30,31]

 The positively-charged carrier materials 

also help to facilitate cellular uptake by masking the 

negative charge of the DNA or RNA,
[39]

 and facilitating 

an attractive interaction with the negatively-charged 

cellular membrane.
[40]

 

 

CONCLUSION 
 

While the idea of targeted delivery is typically associated 

with medical applications, food scientists have recently 

begun to adapt older concepts where complex 

coacervation has been used to entrap flavors and oils for 

the delivery of proteins, nutraceuticals, and other water-

soluble actives.
[41-43]

 Just as delivery platforms in 

biomedicine can be harnessed to facilitate uptake, 

materials design strategies are being utilized to enable 

more efficient absorption of nutrients, vitamins, and 

antioxidant molecules during digestion.
[44,45]

 Here, the 

design parameters are limited in terms of 

biocompatibility, the availability of bulk quantities of 

food-grade, cost, and the need to generate a delicious 

product. 
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