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INTRODUCTION 
 

Colorectal cancer is the third leading cause of cancer 

related death in the USA. To improve clinical outcomes 

and facilitate personalized therapies, sensitive molecular 

tools are needed to help identify novel biomarkers for 

metabolic pathway aberrations. Metabolomics is an 

emerging analytical tool that can be described as the 

systematic study of the entire profile of small molecules 

in a clinical sample that are detected using mass 

spectrometry. Analysis of metabolites from a multitude 

of matrices, such as tumor tissue and adjacent mucosa, 

may represent the downstream functional products of 

gene expression and protein synthesis, all of which 

influence colorectal cancer carcinogenesis.
[1] 

The diagnostic power for metabolomic tests for 

colorectal neoplasia can be improved using a multimodal 

approach and combining metabolites from diverse 

chemical classes. In addition, quantification of 

metabolites enhances separation of disease-specific 

metabolomic profiles. Future efforts must be focused on 

developing quantitative assays for the metabolites 

comprising the optimal diagnostic biomarker.
[2] 

 

Da Silva et al., in 2018, identified consistent metabolic 

changes with inborn-like errors and defined a continuum 

from normal controls of elevated risk for invasive breast 

cancer and other adenocarcinomas. The findings describe 

a new early detection method and the assessment of 
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ABSTRACT 
 

Metabolomics is an emerging analytical tool that has allowed cancer research to elucidate specific biomarkers and 

helped improve clinical outcomes. The aim of the project was to identify metabolic conditions in patients with 

colorectal cancer. A targeted metabolomic approach with the Biocrates Absolute IDQ
® 

p180 Kit was used to 

quantify metabolites of various biochemical classes. The samples comprised 85 human cancer tissue and 85 

cancer-surrounding tissue samples from the same patients. Classes of amino acids, biogenic amines, acylcarnitines, 

glycerophospholipids, sphingolipids and monosaccharides were analyzed. The statistical analysis included data 

normalization and quality control, Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), 

univariate statistics with significance testing, and analysis of fold changes. The main biochemical pathways 

affected were also analyzed. Univariate statistical analysis by comparing tumor and tumor-surrounding tissue found 

a total of 118 significantly altered metabolites. Tumor tissue samples displayed severely altered metabolomic 

features, which affected different pathophysiological pathways ranging from energy to lipid metabolism. 

Metabolomic reprogramming, glutaminolysis, prominent Warburg Effect, and increased IDO activity, which all 

have been described for cancer cells, could be conclusively observed in this analysis. The importance of lipid 

alterations occurring in tumor cells were also confirmed with this study. In colorectal cancer, the tumor and tumor-

surrounding tissue present distinct metabolomic states and dramatic metabolomic reprogramming. Especially the role 

of sphingomyelins and lysophosphatidylcholines (lysoPCs) as potential tissue biomarkers for colorectal cancer 

needs further investigation. 
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prognosis platform for glandular cancer as well as 

support a role for pre-existingin born-like errors of 

metabolism in the process of adenocarcinoma 

carcinogenesis. A novel concept of glandular 

carcinogenesiswas defined, particularly in breast cancer, 

that characterizes malignant transformation as the 

manifestation of underlying metabolic insufficiencies.
[3] 

 

To investigate colorectal cancer metabolism, an 

electronic literature search was performed by Fan Z et 

al., from 1998 to January 2016, for studies that evaluate 

the metabolomic profile of patients with colorectal 

cancer regarding diagnosis, recurrence and prognosis. 

Altered metabolites and pathways were related to 

prognosis, survival, and recurrence. This review could 

represent the most comprehensive information and 

summary about metabolism to date. It certificates that 

metabolomics have enormous potential for both 

discovering clinical biomarkers and elucidating 

previously unknown mechanisms of colorectal cancer 

pathogenesis.
[4] 

 

The aim of our project was to identify metabolomics 

changes mass-spectrometry-based in tumor tissue and 

tumor-adjacent mucosa in patients with colorectal 

adenocarcinoma. 

 

MATERIAL AND METHODS 
 

Study samples  

The samples included 85 human cancer tissue and 85 

cancer-surrounding tissue samples from the same 

patients. Patients with a scheduled colorectal resection 

after a CRC diagnosis were recruited for this study. All 

patients provided informed written consent and a 

research plan was approved by the Barretos Cancer 

Hospital – FPio XII Ethics Committee. The patients 

undergoing chemo and/or radiotherapy prior to surgery 

were excluded from the study. Sample collection: within 

30 min of surgery, a 5-mm section of CRC and adjacent 

mucosal tissue samples that were >10 cm proximal to the 

CRC were collected from resected colons in the 

Pathology Lab. Clinicopathological data was collected 

including information on the patient (age, gender, 

relapse, survival), as well as tumor sample characteristics 

(tumor site, differentiation grade, venous invasion, 

lymph node invasion, perineural invasion, peritumoral 

infiltration, TNM stage, AJCC staging), see Table 1. 

Human tissue samples were stored immediately at -80 °C 

following collection until processed for metabolomics. 

Collection was verified by the study technician who was 

present in the pathology lab and pre-op room for each 

resection. Patient-matched CRC and adjacent mucosa 

were collected for all individuals. All samples were 

shipped to Biocrates Life Sciences AG, Innsbruck, 

Austria for metabolomics and statistical data analyses. 

 

Metabolite profiling 

To extract metabolites from tissue and tumour tissue, 

samples were homogenized using Precellys
®
 with 

ethanol phosphate buffer. For metabolite measurements, 

samples were centrifuged and the supernatant was used 

for analysis. A Biocrates Absolute IDQ
® 

p180 Kit was 

used to quantify metabolites of various biochemical 

classes including amino acids, biogenic amines, 

acylcarnitines, glycerophospholipids, sphingolipids, and 

monosaccharides. The p180 kit is a widely used targeted 

metabolomics platform that yields highly reproducible 

results.
[5]

 The fully automated assay was based on PITC 

(phenylisothiocyanate) derivatization in the presence of 

internal standards followed by FIA-MS/MS (Flow 

injection analysis tandem mass spectrometry) to detect 

acylcarnitines, (lyso-) phosphatidylcholines, 

sphingomyelins, and hexoses, and LC-MS/MS (liquid 

chromatography tandem mass spectrometry) to detect 

amino acids and biogenic amines, using a SCIEX 4000 

QTRAP® (SCIEX, Darmstadt, Germany) or a Waters 

XEVO™ TQMS (Waters, Vienna, Austria) instrument 

with electrospray ionization (ESI). The experimental 

metabolomics measurement technique is described in 

detail by patent US 2007/0004044.
[6]

 For the 

quantification of the LC−MS/MS part, the metabolite 

concentrations were calculated by stable isotope dilution 

and seven-point calibration curves. For the FIA-MS/MS 

part, metabolites were quantified using a one-point 

internal standard calibration; they were isotope-corrected 

as well. The amount of tissue used for the analysis was 

included in the concentration calculations to yield 

absolute concentration values in pmol/mg tissue.  

 

Statistical Analysis 

Different statistical methods were applied with the aim 

of identifying differences in metabolite levels between 

cancer tissue and cancer surrounding tissues. The 

analysis included data normalization and quality control, 

Principal Component Analysis, Hierarchical Cluster 

Analysis, univariate statistics with significance testing, 

and analysis of fold changes. In addition, the main 

biochemical pathways affected were analyzed. The 

workflow of the analysis is summarized in Figure 1. The 

results of the second part of this study, involving plasma 

samples of colorectal cancer patients, will be published 

separately.  

 

Data cleaning, imputation, and transformation 

To exclude analytes in which concentration values are 

missing or are below the limit of detection (LOD), a 

general cleaning of the data set was performed. The 

cleaned data set was then further used for scaling, 

transformation, and the statistical analysis.
[7]

 The 

concentration values for the whole dataset were cleaned 

focusing on the tissue type as group variable, applying an 

80% rule. For statistical analysis at least 80% valid 

values above LOD needed to be available per analyte in 

the samples for each tissue type. If at least one group - be 

it the cancer tissue or the non-cancerous adjacent mucosa 

- fulfilled this criterion the analyte was included for 

further statistical analysis. Therefore, if an analyte had 

20% or more values below LOD in both groups, it was 

excluded.  
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Missing value imputation is commonly used to logically 

replace missing values with a non-zero value while 

maintaining the overall data structure. Remaining values 

below LOD in the data set were, therefore, imputed 

applying a log-spline imputation method, which was 

developed for data being right censored, left censored, or 

interval censored.
[8] 

 

The study data was further processed by a log2 

transformation. This transformation is commonly applied 

to meet assumptions of statistical tests (e.g. symmetric 

distribution of data, correction for heteroskedasticity, and 

skewness of the data) and to improve the interpretability 

and visualization. 

 

Data processing, statistical analysis, and data 

visualization were performed using R (Version 3.2.3). 

 

Univariate Statistics 

General measures of central tendency and dispersion 

were calculated for the cleaned and imputed data set to 

provide a quantitative description for the different 

groups. A paired t-test was performed on the log 

transformed concentration values to detect significantly 

altered analytes between cancer tissue and cancer 

surrounding tissue from the same patients. Finally, fold 

changes of the analyte changes were calculated.  

 

A significance level of α = 0.05 was determined, and p-

values were calculated.  To control the False-Discovery-

Rate (FDR) during multiple comparisons, an adjusted p-

value (Benjamini-Hochberg correction) was calculated.
[9]

 

All analytes with significantly altered concentrations 

(p < 0.05) and fold changes are listed in Table 2. 

 

Multivariate Statistics 

Multivariate statistical methods were applied to not only 

detect changes of single metabolites between different 

groups, but also to show the dependency structures 

between individual analytes. In this case, Principal 

Component Analysis (PCA), Partial Least Squares 

Discrimination Analysis (PLS-DA), and Hierarchical 

Cluster Analysis (HCA) were used as multivariate 

approaches. The multivariate analysis was performed on 

the cleaned, imputed, and log-transformed data.  

 

The hypothesis-free PCA was based on an unsupervised 

linear mixture model to highlight the variance within the 

dataset while reducing the dimensionality, generating a 

smaller number of mutually decorrelated principal 

components (PCs). As a supervised linear mixture 

model, the PLS regression was employedto separate the 

predefined groups, the tumor tissue and the non-tumor 

tissue, as much as possible based on the metabolite 

concentrations.  

 

An HCA was performed to visualize samples according 

to intrinsic similarities in their measurements, 

irrespective of specific sample groupings. Here, the 

complete-linkage method was applied, which defines the 

cluster distance between two clusters to be the maximum 

distance between their individual components. 

 

RESULTS 
 

Metabolite Profiling 

All the 170 samples were randomized and measured on 

three different kit-plates. The results were later 

normalized based on the quality control level QC2. 

Accuracy of the measurements was determined assessing 

the accuracy of the calibrators, which was in the normal 

range of the method for all analytes. Quality control 

samples were within the pre-defined tolerances of the 

method. To test for a potential bias from measuring the 

samples on different plates, all samples from the three 

plates were subjected to a PCA (suppl. Figure 1 A, B).  

The sample distribution was quite homogeneous for the 

three plates measured, with very few outliers and the 

Hotelling‟s T
2 

95% confidence ellipses being almost 

superimposable (suppl. Figure 1A). The corresponding 

PCA loadings plot (suppl. Figure 1B) shows the analyte 

distribution, again without outliers or abnormalities. 

Therefore, no obvious plate effects occurred during the 

measurement allowing robust statistical analysis of the 

metabolites. 

 

From the 188 metabolites measured by the kit, 51 were 

removed during the cleaning process, leaving 137 

metabolites for statistical analysis.  

 

Multivariate Statistics: Tumor vs. tumor-surrounding 

tissue 

In an unsupervised multivariate PCA, the samples were 

clearly separated based on the two individual tissue types 

with almost no overlap (Figure 2A). This is quite 

striking, because it indicates that the differences between 

tumor- and tumor-surrounding tissue were stronger than 

the inter-individual differences, even thoughthe cohort 

was very heterogeneous regarding age, gender, BMI, 

medication, comorbidities, and general lifestyle.  

 

As expected, the separation was even more pronounced 

in the supervised PLS-DA, with no overlap between the 

95% confidence ellipses and only very few outliers 

(Figure 2B). Together these analyses show that the tumor 

and tumor-surrounding tissue have distinct metabolomic 

states due to a dramatic reprogramming of the colon 

cancer cell metabolism compared to the normal cells. 

 

In line, also the HCA (Figure 3) revealed distinct 

clustering according to the type of tissue. Furthermore, it 

is noteworthy that the analytes clustered together 

according to their ontology class. This indicates that the 

observed changes between tumor and tumor-surrounding 

tissue were not random but related metabolites were 

affected in a similar way. Therefore, we analyzed the 

metabolites with significantly changed concentrations 

between cancer and non-cancer tissues focusing on 

pathways and ontology classes.   
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Univariate statistics 

Comparison of tumor and tumor surrounding tissue from 

the same patients showed 118 significantly altered 

metabolites. The significant analytes, together with the p-

values and fold changes are listed in supplemental Table 

1.  

 

Hexoses and amino acids connected to glycolysis 

The three amino acidsalanine, serine, and glycinecan be 

generated from glycolysis intermediates. Alanine can be 

generated from pyruvate, serine from 3-

phosphoglycerate and glycine from serine. The 

concentrations of all three glycolysis-related amino acids 

(as well as their sum) were significantly higher in tumor 

tissue samples than in the normal adjacent samples 

(Figure 4). In contrast, average hexose levels, which 

mainly represent glucose, were significantly lower in 

tumor tissue. Together, these results point to an overall 

increased glycolysis rate in the tumor tissue.  

 

Amino acids connected to the tricarboxylic acid 

(TCA) cycle 

The amino acid aspartate can be converted into the TCA 

metabolite oxaloacetate (and vice versa) and thus is a 

link between the urea cycle and the TCA cycle, and it 

acts as a source for asparagine synthesis. The amino acid 

glutamate can be converted to the TCA metabolite α-

ketoglutarate (and vice versa) and acts as a source 

metabolite for the synthesis of glutamine and proline, 

which in turn can be hydroxylated to form 

hydroxyproline. In this study, average concentrations of 

proline, its hydroxylated form t4-OH-proline, asparagine, 

and aspartate were significantly higher in cancer tissue 

(Figure 5). This indicates the increased utilization of 

amino acids for biosynthesis during tumor growth. 

Glutamine levels were reduced in the tumor tissue, 

consistently the ratio for glutaminolysis ((Ala + Asp + 

Glu) / Gln) was significantly increased.  

 

Amino acids connected to the urea cycle and 

polyamines 

The TCA cycle is connected to the urea cycle via 

arginine. Both arginine as well as the posttranslationally 

modified asymmetrically dimethylatedargininine 

(ADMA) are increased in the tumor tissue. Citrulline, 

Arginine, and Ornithine are important intermediates of 

the urea cycle (Figure 6). In this study, the 

concentrations of all these metabolites were significantly 

elevated in tumor tissue samples. 

 

Ornithine also acts as a source for Putrescine, which in 

turn is the source metabolite for spermidine and 

subsequently spermine synthesis. Both putrescine and 

spermidine were significantly increased in tumor tissue, 

while spermine was slightly but significantly reduced 

(Figure 6C).  

 

Aromatic amino acids 

Phenylalanine, tryptophan, and tyrosine form the 

aromatic amino acids (AAAs). The concentrations of 

tyrosine, tryptophan, and the sum of the AAAs were 

augmented in the cancer tissue (Figure 7). Tryptophan 

acts as a source of serotonin and kynurenine, which were 

also significantly altered in the cancer tissue.While 

serotonin was significantly reduced in tumor tissue, 

kynurenine was increased, indicating that these two 

pathways downstream of tryptophan were regulated quite 

differently in the tumor. Consistent with the altered 

kynurenine and tryptophan levels, the metabolism 

indicator for indoleamine 2,3-dioxygenase (IDO) activity 

(ratio of kynurenine / tryptophan) was significantly 

increased in the samples from colorectal cancer patients.  

 

Essential amino acids 

All analyzed essential amino acids, including threonine, 

lysine, histidine, and methionine, as well as metabolites 

thereof, such as alpha AAA or taurine, were higher in 

tumor tissue samples (Figure 9). Again, this indicates the 

high amount of amino acids present in tumor cells 

needed for protein biosynthesis and rapid proliferation. 

In contrast, histamine was decreased in tumor tissue. 

Histamine is derived from the decarboxylation of 

histidine.  

 

Branched chain amino acids (BCAAs), which comprise 

leucine, isoleucine, and valine, are the most abundant 

essential amino acids. In this study, all single BCAAs 

analytes as well as their sum were significantly higher in 

the tumor tissue samples (Figure 8), a common 

observation previously reported in various cancer tissues.  

 

Acylcarnitines 

Acylcarnitines represent the carrier form of activated 

fatty acids and acetate for the transport across the inner 

mitochondrial membrane (10).  In this study, all 

acylcarnitineswith significant concentration changes 

displayed higher levels in tumor tissue (Figure 9). The 

elevated average levels of carnitine in tumor tissue 

correlated with the observed increased levels ofthe amino 

acids it is synthetized from, methionine and lysine.  

 

Phospholipids 

We observed a shift in the metabolite levels of different 

subclasses within the phospholipids. Almost all 

phosphatidylcholines (except PC aa C36:3, PC aa C36:4, 

PC ae C34:3, and PC ae C36:5) showed increased 

concentrations in tumor tissue samples (Figure 10). 

Oppositely, the levels of the related 

lysophosphatidylcholines (lysoPCs) (Figure 11) and all 

sphingomyelins (except SM C16:1) (Figure 12) were 

significantly decreased in the tissue samples from 

colorectal cancer patients. These results point to a 

marked difference in membrane lipid composition 

between the two groups.  

 

DISCUSSION 

In this study, metabolomic differences in tumor tissue 

and tumor surrounding tissue from patients with 

colorectal cancer were investigated. Therefore, a targeted 

metabolomic approach using Biocrates® p180 Kit was 
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conducted analyzing 170 tissue samples. The overall 

excellent analyte coverage was the basis for investigating 

a variety of key biochemical pathways. 

 

We observed statistically significant differences in 

metabolite concentrations of several different pathways. 

The glycolysis pathway was one of the pathways in 

which significant changes were most expected. Most 

cancer cells rely less on oxidative phosphorylation for 

energy generation, but instead display increased 

glycolysis rates, a feature also known as „Warburg 

effect‟. Warburg observed an elevated glucose uptake in 

cancer cells, which was considered as the basis of cancer 

cell metabolism and was subsequently the most used 

metabolomic feature to distinguish tumor cells from 

normal cells.
[11]

 Directly connected to this are the 

increased levels of most amino acids. High amounts of 

amino acids derived from glycolysis (glycine, serine, and 

alanine) in the tumor tissue can be used for increased 

protein biosynthesis during cancer growth and 

proliferation. In addition, glycine can serve as a 

precursor for DNA-nucleotide synthesis and is therefore 

essential for efficient tumor proliferation. The 

concentrations of amino acids related to the TCA cycle 

were increased in the colorectal cancer patient tissues as 

well, as their utilization is augmented to support tumor 

growth.The TCA cycle comprises a series of consecutive 

reactions that form the key part of aerobic respiration in 

cells and is used to produce energy through the oxidation 

of Acetyl-CoA, which is derived from the breakdown of 

carbohydrates, fatty acids, and proteins. In addition, the 

TCA cycle provides direct precursors for the 

biosynthesis of certain amino acids. 

 

Glutamine was the only amino acid with significantly 

reduced concentrations in the tumor tissue. Increased 

glutaminolysis, which describes the conversion of 

glutamine to glutamate in tumor tissue, was highly 

prominent in this study. Apart from glucose, the other 

main substrate that contributes to energy production in 

cells is glutamine. Glutaminolysis is upregulated in many 

types of cancer and glutamine provides the crucial source 

of nitrogen to rapidly proliferating cells for amino acid 

synthesis via glutamate production and transamination. 

In addition, instead of oxidizing glutamine completely to 

generate ATP, the mitochondria in cancer cells shunt 

glutamine into citrate for rapid lipid synthesis and 

NADPH production. As a result of this switch to 

increased glutamine dependence by the mitochondria, the 

decreased contribution of glucose to the TCA cycle can 

be compensated for by contributions from glutamine. 

This observed mitochondrial reprogramming has been 

described as resulting from increased expression of the 

oncogenic Myc transcription factor, which enhances the 

expression of the Glutaminase enzyme and specific 

glutamine transporters to support increased 

glutaminolysis. Chen, J-Q et al., Jin L et al., and Kim 

MH et al. have written detailed reviews on metabolic 

reprogramming and glutaminolysis.
[12,17] 

 

Table 1: Metabolites with significantly different concentrations comparing tumor tissue and tumor-surrounding 

normal tissue.Red: concentration reduced in the tumor tissue, Blue: concentration increased in the tumor tissue.  

 

Rank Metabolite p-value 

p-value 

(BH 

adj.) 

Mean 

Fold 

change 
 

Rank Metabolite p-value 

p-value 

(BH 

adj.) 

Mean 

Fold 

change 

1 H1 4.05E-41 5.54E-39 9.6 
 

60 SM.C16.1 3.31E-11 7.57E-11 -1.3 

2 SM.C18.0 7.12E-38 4.88E-36 3.4 
 

61 PC.ae.C38.0 3.52E-11 7.90E-11 -1.2 

3 Serotonin 8.93E-37 4.08E-35 14.8 
 

62 PC.ae.C42.2 7.25E-11 1.60E-10 -1.4 

4 Pro 7.98E-36 2.73E-34 -3.4 
 

63 Ser 9.11E-11 1.98E-10 -1.5 

5 Ile 1.48E-32 4.05E-31 -2.3 
 

64 SM..OH..C22.2 1.51E-10 3.24E-10 1.4 

6 Tyr 1.36E-30 3.11E-29 -2.3 
 

65 PC.ae.C32.2 2.14E-10 4.51E-10 -1.7 

7 PC.aa.C32.1 1.62E-30 3.17E-29 -2.9 
 

66 PC.aa.C40.5 2.52E-10 5.22E-10 -1.3 

8 Thr 2.64E-30 4.52E-29 -2.1 
 

67 PC.ae.C40.1 3.09E-10 6.32E-10 -1.3 

9 Leu 2.96E-29 4.50E-28 -2.3 
 

68 PC.ae.C40.3 3.31E-10 6.68E-10 -1.4 

10 Phe 6.76E-29 9.26E-28 -2.2 
 

69 Cit 3.90E-10 7.75E-10 -1.7 

11 Trp 3.11E-28 3.87E-27 -2.2 
 

70 PC.aa.C40.3 5.31E-10 1.04E-09 -1.4 

12 Val 2.36E-27 2.69E-26 -2.0 
 

71 PC.ae.C38.1 6.29E-10 1.21E-09 -1.5 

13 PC.aa.C32.2 9.22E-27 9.71E-26 -2.9 
 

72 PC.ae.C36.0 5.05E-09 9.53E-09 -1.3 

14 t4.OH.Pro 3.23E-24 3.16E-23 -2.3 
 

73 lysoPC.a.C16.0 5.08E-09 9.53E-09 1.4 

15 Kynurenine 1.30E-23 1.19E-22 -3.0 
 

74 PC.ae.C44.6 6.61E-09 1.22E-08 -1.5 

16 SM..OH..C22.1 1.84E-23 1.57E-22 1.9 
 

75 PC.ae.C42.1 1.14E-08 2.07E-08 -1.2 

17 SM..OH..C16.1 3.99E-23 3.21E-22 1.6 
 

76 SM.C26.1 2.31E-08 4.17E-08 1.4 

18 Met 1.25E-21 9.54E-21 -1.9 
 

77 PC.ae.C34.1 4.13E-08 7.34E-08 -1.3 

19 lysoPC.a.C16.1 1.41E-21 1.02E-20 -2.3 
 

78 PC.ae.C38.3 4.20E-08 7.38E-08 -1.3 

20 His 3.69E-21 2.53E-20 -1.7 
 

79 SM..OH..C24.1 4.43E-08 7.69E-08 1.3 

21 Asn 8.67E-21 5.66E-20 -2.1 
 

80 PC.aa.C32.3 8.16E-08 1.40E-07 -1.4 

22 SM.C18.1 1.54E-20 9.62E-20 1.6 
 

81 lysoPC.a.C24.0 1.27E-07 2.14E-07 -1.4 
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23 PC.ae.C44.3 1.02E-19 6.09E-19 -1.7 
 

82 SM..OH..C14.1 1.54E-07 2.57E-07 1.2 

24 C0 1.87E-19 1.07E-18 -2.0 
 

83 lysoPC.a.C20.4 2.06E-07 3.40E-07 -1.3 

25 Met.SO 2.27E-19 1.25E-18 -3.0 
 

84 PC.ae.C38.2 5.30E-07 8.64E-07 -1.3 

26 PC.aa.C42.4 2.65E-18 1.40E-17 -1.6 
 

85 C2 5.50E-07 8.87E-07 -1.5 

27 PC.ae.C30.0 4.98E-18 2.53E-17 -2.1 
 

86 lysoPC.a.C26.1 6.94E-07 1.11E-06 -1.2 

28 ADMA 1.20E-17 5.86E-17 -2.3 
 

87 lysoPC.a.C17.0 7.83E-07 1.23E-06 1.3 

29 C18 1.38E-17 6.51E-17 -2.4 
 

88 lysoPC.a.C18.1 1.16E-06 1.81E-06 -1.4 

30 Lys 1.70E-17 7.76E-17 -1.5 
 

89 PC.aa.C30.2 1.66E-06 2.56E-06 -2.0 

31 lysoPC.a.C20.3 2.65E-17 1.17E-16 -1.8 
 

90 PC.aa.C28.1 1.72E-06 2.61E-06 -1.2 

32 PC.aa.C34.4 2.77E-17 1.18E-16 -1.6 
 

91 PC.aa.C34.2 1.03E-05 1.55E-05 1.1 

33 Arg 9.06E-17 3.76E-16 -1.6 
 

92 PC.ae.C38.5 1.19E-05 1.77E-05 1.2 

34 PC.aa.C30.0 1.01E-16 4.08E-16 -1.7 
 

93 PC.aa.C34.3 2.98E-05 4.40E-05 -1.2 

35 PC.ae.C44.5 1.38E-16 5.39E-16 -1.8 
 

94 PC.ae.C36.5 4.98E-05 7.25E-05 1.2 

36 C16 2.20E-16 8.38E-16 -2.3 
 

95 PC.aa.C36.1 1.05E-04 1.51E-04 -1.2 

37 Glu 2.66E-16 9.85E-16 -1.7 
 

96 PC.ae.C40.4 1.40E-04 2.00E-04 -1.2 

38 C18.2 5.37E-16 1.94E-15 -1.9 
 

97 lysoPC.a.C18.0 2.23E-04 3.16E-04 1.2 

39 Ala 1.69E-15 5.93E-15 -1.6 
 

98 Spermidine 2.99E-04 4.14E-04 -1.5 

40 SM.C24.1 1.75E-15 5.99E-15 1.6 
 

99 SM.C16.0 2.99E-04 4.14E-04 1.1 

41 C18.1 2.29E-15 7.66E-15 -2.1 
 

100 PC.aa.C38.3 3.86E-04 5.29E-04 -1.2 

42 PC.ae.C30.1 2.73E-15 8.91E-15 -2.5 
 

101 PC.ae.C34.0 4.41E-04 5.98E-04 -1.2 

43 Gly 2.90E-15 9.23E-15 -1.6 
 

102 PC.aa.C38.0 6.07E-04 8.15E-04 -1.1 

44 PC.aa.C42.2 4.42E-15 1.38E-14 -1.6 
 

103 Spermine 9.60E-04 1.28E-03 1.1 

45 Taurine 5.69E-15 1.73E-14 -1.4 
 

104 Gln 1.35E-03 1.78E-03 1.1 

46 PC.aa.C42.1 5.31E-14 1.58E-13 -1.5 
 

105 PC.aa.C38.6 1.42E-03 1.85E-03 -1.1 

47 PC.aa.C40.2 5.60E-14 1.63E-13 -1.6 
 

106 Putrescine 1.87E-03 2.42E-03 -1.5 

48 PC.ae.C32.1 5.77E-14 1.65E-13 -1.7 
 

107 PC.ae.C40.2 2.03E-03 2.60E-03 -1.2 

49 PC.aa.C36.3 5.91E-14 1.65E-13 1.3 
 

108 PC.ae.C34.3 2.71E-03 3.44E-03 1.2 

50 Asp 1.75E-13 4.80E-13 -2.0 
 

109 SM.C26.0 4.48E-03 5.63E-03 1.2 

51 PC.aa.C36.6 3.77E-13 1.01E-12 -1.4 
 

110 lysoPC.a.C28.0 4.75E-03 5.91E-03 -1.2 

52 PC.aa.C42.5 1.02E-12 2.68E-12 -1.4 
 

111 PC.aa.C32.0 7.75E-03 9.57E-03 -1.1 

53 C14 1.10E-12 2.84E-12 -2.3 
 

112 PC.ae.C40.5 8.12E-03 9.93E-03 -1.1 

54 PC.aa.C36.4 1.69E-12 4.30E-12 1.3 
 

113 alpha.AAA 9.53E-03 1.16E-02 -1.3 

55 SM.C20.2 3.19E-12 7.94E-12 2.6 
 

114 PC.ae.C40.6 1.97E-02 2.36E-02 -1.1 

56 PC.aa.C40.6 1.03E-11 2.52E-11 -1.3 
 

115 PC.ae.C36.4 2.10E-02 2.48E-02 -1.1 

57 PC.aa.C40.4 1.25E-11 3.00E-11 -1.5 
 

116 PC.aa.C36.0 2.10E-02 2.48E-02 -1.1 

58 PC.ae.C42.3 1.75E-11 4.13E-11 -1.5 
 

117 lysoPC.a.C28.1 3.32E-02 3.89E-02 -1.1 

59 Orn 2.50E-11 5.80E-11 -1.6 
 

118 Histamine 3.40E-02 3.95E-02 1.5 

 

 
Figure 1: Schematic depiction of the study outline and data analysis workflow 
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Suppl. Figure 1: Multivariate statistical analysis of plate effects for the tissue samples 

PCA scoring (A) and loading (B) were applied on the cleaned, imputed, and log2 transformed data set for the 

tissue samples over the three measured plates. The 95% confidence interval ellipses are illustrated for the two 

different groups. 

 

 
Figure 2: Multivariate statistical analysis for significant analytes between the tumor and tumor-surrounding 

tissue. 

PCA (A), PLS-DA (B) were applied on the cleaned, imputed and log2 transformed data set. The 95% confidence 

interval ellipses are illustrated for the two different groups. 
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Figure 3: HCA for significant analytes between the tumor and tumor-surrounding tissue 

HCA was applied on the cleaned, imputed, and log2 transformed data set. Samples are indicated in the 

individual columns and significantly altered analytes in the individual rows. 

 

 
Figure 4: Significantly changed metabolites connected to glycolysis 

A) Schematic depiction of the origin of glycolysis-derived amino acids. B) Significantly changed analytes 

between tumor and tumor-surrounding tissue 
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Figure 5: Significantly changed metabolites connected to the TCA cycle 

A) Schematic depiction of the TCA cycle and associated amino acids. B) Analytes with significantly changed 

concentrationscomparing tumor and tumor-surroundingtissue, including the ratio for glutaminolysis.  

 

 
Figure 6: Significantly changed amino acids connected to the urea cycle and polyamines 

A) Schematic depiction of the urea cycle and polyamine synthesis. B) Amino acids with significantly changed 

concentrations between tumor and tumor-surrounding tissue. C) Polyamines with significantly changed 

concentrations between tumor and tumor-surrounding tissue. 
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Figure 7: Significantly changed metabolites and ratios connected to aromatic amino acids 

A) Schematic depiction of the aromatic amino acids and connected metabolites. B) Analytes with significantly 

changed concentrations between tumor and tumor-surroundingtissue, including the ratios for kynurenine 

synthesis (IDO activity) and serotonin synthesis (Serotonin…Trp) from tryptophan.  

 

 
Figure 8: Significantly changed essential amino acids and related metabolites 

Analytes with significantly changed concentrations between tumor and tumor-surroundingtissue, including the 

sums of all amino acids and of the branched chain amino acids.  
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Figure 9: Significantly changed acylcarnitines. 

Analytes with significantly changed concentrations between tumor and tumor-surroundingtissue, including the 

sum of all long chain acyl carnitines (acyl chains C14-C18).  
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Figure 10: Significantly changed phosphatidylcholines. 

A) Diacyl-phosphatidylcholineswith significantly changed concentrations between tumor and tumor-

surrounding tissue.B) Acyl-alkyl-phosphatidylcholineswith significantly changed concentrations between tumor 

and tumor-surrounding tissue, including the sum of all acyl-alkyl-phosphatidylcholines.  
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Figure 11: Significantly changed lysophosphatidylcholines. 

Analytes with significantly changed concentrations between tumor and tumor-surrounding tissue, including the 

sum of all lysoPCs.  

 

 
Figure 12: Significantly changed sphingomyelins. 

Analytes with significantly changed concentrations between tumor and tumor-surrounding tissue, including the 

sum of all sphingomyelins.  

 

The amino acid arginine forms the link between the 

observed elevated amino acids and the observed elevated 

concentrations of metabolites of the urea cycle and 

polyamine metabolism. Methylated arginine is a post-

translational modified version of arginine that is 

commonly formed from protein arginine. In contrast to 

symmetrically (SDMA), asymmetrically methylated 

forms of arginine (ADMA) are toxic when released 

during protein turnover and have been linked to arterial 

stiffness and heart disease. Average concentration levels 

of ADMA were higher in tumor tissue, which has been 

reported previously by others.
[15]

 It has been suggested 

that the high ADMA concentrations are beneficial for the 

cancer cells as they reduce susceptibility to apoptosis. 

Polyamines, including putrescine, spermidine, and 

spermine, all contain two or more primary amino groups. 

The biological roles for polyamines are various, 

including DNA binding, modulation of translation, cell 

growth, and ion channel receptors. Almost all cells can 

produce polyamines, but their production is especially 

high in rapidly growing cells. The capacity of cancer 

tissue to produce high amounts of polyamines likely 
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contributes to their enhanced proliferation because 

polyamines are indispensable for cellular growth, which 

may at least partially explain why cancer patients with 

increased polyamine levels have a poorer prognosis 

(16,17). A comprehensive study also found higher single 

and total polyamine levels in colorectal carcinoma 

compared to normal surrounding mucosa, correlating to 

the results in the present study. Opposite to putrescine 

and spermidine, spermine levels were reduced in the 

tumor tissue in the present study. Notably, tumor 

sperminelevels were identified as a significant prognostic 

factor for disease recurrence previously.
[16] 

 

Within the aromatic amino acids, especially the 

tryptophan pathway has been described to play a role in 

cancer. Kynurenine is synthesized from tryptophan by 

the enzyme Indoleamine-2, 3-dioxygenase (IDO) in 

many tissues in response to immune activation. 

Kynurenine and its further breakdown products have 

been described to be involved in diverse biological 

functions, such as dilating blood vessels during 

inflammation and regulating the immune response.  

Interestingly, some cancers show increased kynurenine 

production, which in turn enhances tumor growth. IDO 

permits tumor cells to escape the immune system by 

depletion of tryptophan in the microenvironment of the 

cells. Overexpression of IDO has also been found in the 

context of colorectal cancer.
[19] 

 

Like kynurenine, serotonin is also a tryptophan-derived 

metabolite. Serotonin is a biogenic amine that serves as a 

neurotransmitter in the central nervous system, local 

regulator in the gut, and vasoactive agent in the blood. 

Serotonin is mainly synthesized and stored in the 

enterochromaffin cells of the intestine. Recently it has 

been shown that serotonin promotes angiogenesis in 

colon cancer allografts by specifically influencing matrix 

metalloprotease expression in tumor-infiltrating 

macrophages, thereby affecting the production of 

circulating angiogenesis inhibitor angiostatin In contrast 

to these results, and opposite to kynurenine and 

tryptophan, and in fact to most amino acids and biogenic 

amines, the present study found serotonin levels much 

higher in non-tumor tissue than in tumor tissue. 

Consistently, the ratio corresponding to the serotonin 

synthesis by tryptophan hydroxylase and aromatic L-

amino acid decarboxylase showed a significant reduction 

of the activity of these enzymes in the tumor tissue, 

indicating a shift in the tumor cell metabolism funneling 

most of the tryptophan into the kynurenine pathway, 

promoting tumor growth.  

 

Likewise, the biogenic amine histamine was decreased in 

tumor tissue, although it is mainly derived from the 

essential amino acid histidine, which was detected at 

increased levels in the tumor tissue compared to the 

control. Histamine is a product of histidine 

decarboxylation by the enzyme histidinedecarboxylase. 

The present results indicate that histidine decarboxylase 

expression or activity was negatively affected in the 

tumor tissue.Oncogene-mediated repression of histidine 

decarboxylase expression has been reported.
[21]

 which 

contributes to maintaining high levels of histidine in the 

cancer cells, promoting tumor growth. However, several 

previous studies indicated that also histamine can 

modulate proliferation of different normal and malignant 

cells. High histamine biosynthesis and levels, together 

with specific histamine receptors, have been found in 

different human melanoma, colon, and breast cancers, as 

well as in experimental tumors in which histamine has 

been reported to act as a paracrine and autocrine 

regulator of proliferation, usually with a pro-proliferative 

effect In addition, histamine released by mast cells was 

described to induce tumor proliferation and 

immunosuppression through the specific expression of 

its associated histamine receptors.
[23,24]

 The examples of 

glutamine, spermine, histamine, and serotonin show that 

although the metabolism of some ontology classes like 

amino acids and biogenic amines was almost completely 

shifted towards higher concentrations in tumor cells, the 

presence or activity of certain enzymes is specifically 

affected in the tumor tissue so that distinct metabolites 

show the opposite trend. In this way, small differences in 

the single metabolite concentrations can have a major 

effect on the overall cell status.  

 

As expected, BCAAs were also detected at higher levels 

in the tumor tissue, as in several previous studies. 

BCAAs account for over 20% of total dietary protein 

obtained from the human diet. BCAAs have emerged as 

biomarkers of metabolic diseases and have the potential 

to predict type II diabetes.
[25]

 Similarly, the sum of 

BCAAs has been used as an indicator for short-term 

metabolic control, mTOR signaling and insulin secretion 

(26). Both diabetes and cancer are characterized by 

severe metabolic alterations and the BCAAs appear to 

play a key role in both of these diseases.
[27]

 BCAAs are 

enzymatically degraded by BCKDH (BCAA α-keto acid 

dehydrogenase) and converted to acetyl-CoA, to enter 

the TCA cycle. Therefore, the catabolism of BCAAs 

provides an important source for the generation of other 

amino acids, especially glutamine and alanine. These 

amino acids are in turn essential as an energy source or 

for protein synthesis in cancer cells.  

 

In addition to amino acids and biogenic amines, 

acylcarnitines play a major role in the energy metabolism 

of cancer cells. Carnitine, which is synthesized from the 

amino acids lysine and methionine, is essential for the 

transport of long-chain acyl groups from fatty acids into 

the mitochondrial matrix. Inside the mitochondrial 

matrix, fatty acids can be broken down to acetyl-CoA in 

a process called β-oxidation, so they can enter the TCA 

cycle for energy production. The transfer of the activated 

fatty acid to carnitine is catalyzed by a series of reactions 

including the enzymes carnitine acyltransferase I, 

carnitine-acylcarnitine translocase, and carnitine 

acyltransferase II.Consistent with our results, a recent 

study found a variety of elevated acylcarnitine species in 

colon cancer cells compared to ovarian cancer cells, 



Denadai M.V. et al.                                                              World Journal of Pharmaceutical and Medical Research 

www.wjpmr.com 

 

48 

potentially due to enhanced β-oxidation and energy 

demand.
[28] 

 

In the present study, also a lot of significant alterations in 

lipid concentrations were detected comparing the tumor 

tissue with the adjacent normal tissue. Interestingly, 

different classes of phospholipids displayed 

concentration changes in different directions: we 

observed increased phosphatidylcholine levels and 

reduced lysophosphatidylcholine and sphingomyelin 

levels in the tumor tissue.  

 

Sphingomyelins are a class of sphingolipids that consist 

of a sphingosine backbone to which a phosphocholine 

moiety and a fatty acid are attached. Sphingomyelins are 

essential in the composition of the myelin sheath that 

surrounds nerve cell axons and serve as widespread 

membrane components. Additionally, the synthesis as 

well as degradation of sphingomyelins give rise to lipid 

soluble second messengers such as diacylglycerol or 

ceramides.
[29]

 Mouse studies have previously shown that 

nutritional consumption of sphingolipids can inhibit 

colon carcinogenesis. In detail, sphingomyelin 

supplementation is able to reduce the number of aberrant 

colonic crypt foci, and upon a longer period of feeding, 

reduces the number of colonic adenocarcinomas. The 

suggested mechanism for this effectis that exogenously 

supplied sphingolipids counteract sphingolipid signaling 

defects in the cancer. Sphingolipids can act as a source 

for sphingosine and ceramides, which were shown to 

induce apoptosis in a human colorectal adenocarcinoma 

cell line.
[30] 

 

Phosphatidylcholines (PCs) are usually the most 

abundant phospholipid class in animals and are 

incorporated as one of the major components of 

membranes. PCs are composed of a choline head group, 

a glycerophosphoric acid together with a variety of 

saturated and unsaturated fatty acids.
[31]

 PCs can be 

further subdivided into diacyl (aa) and acyl-alkyl (ae) 

PCs.  

 

Our results are in line with previous studies, which found 

that the overall level of PCs is elevated in colorectal 

cancer. In addition to increased amounts of 

phospholipids, the phospholipid composition of the 

colorectal cancer cell membrane was altered. These 

changes in membrane phospholipid levels can directly 

influence cell proliferation, viability, and tumor 

development. Increased levels of monounsaturated fatty 

acids and monounsaturated phosphatidylcholines relative 

to polyunsaturated fatty acids and polyunsaturated 

phosphatidylcholines were also observed in the cancer 

microenvironment compared to the adjacent normal 

tissue of different cancer cell types.
[32] 

 

Lysophosphatidylcholines (lysoPCs) result from the 

partial hydrolysis of phosphatidyl-cholines; one fatty 

acid group is enzymatically removed by Phospholipase 

A2. The reduced lysoPC levels together with the 

increased PC levels in the tumor tissue detected in this 

study may be due to a reduced phospholipase A2 

activity. Many studies have shown some impact of 

diverse phospholipase A2 enzymes on cancer, although 

whether they promote or inhibit tumor growth seems to 

depend on the organ and the biochemical 

microenvironment of the tumors.
[33]

 LysoPCs are present 

as minor phospholipids in the cellular membrane and in 

the blood plasma. As lysoPCs are rapidly metabolized by 

lysophospholipase and LPC-acyltransferase, they only 

have a short half-life in vivo. Certain lysoPCs were 

recently described as important cellsignaling 

molecules.
[334,35]

  For example, lysophosphatidic acid 

acts as an autocrine growth factor and is able to stimulate 

proliferation, adhesion, invasion, and tumor metastasis of 

ovarian cancer cells (36–38). 

 

In the context of colorectal cancer, a previous study 

found that cancer patients had lower plasma levels of 

total lysoPCs, saturated lysoPCs, unsaturated lysoPCs, 

and lysoPCs C16:0, and C18:0.
[39]

 These observations 

are in line with this study and possibly highlight lysoPCs 

as biomarkers for colorectal cancer. While a potential 

shift between lysoPC levels from blood to tumor tissue 

indicates an increased consumption of lysoPCs by tumor 

cells, specific signaling properties of lysoPCs in cancer 

cells remain to be elucidated.
[40]

 Additionally, LysoPCs 

may also act as carriers of fatty acids, and extracellular 

hydrolysis of lysoPCs followed by a rapid uptake of the 

respective fatty acids appears to be a characteristic of 

solid tumors in mice.
[1] 

 

Overall, the tumor tissue samples displayed severely 

altered metabolomic features, which affected different 

pathophysiological pathways ranging from energy to 

lipid metabolism. Metabolomic reprogramming, 

glutaminolysis, the prominent Warburg Effect, and 

increased IDO activity, which all have been described for 

cancer cells,were conclusively observed in this analysis. 

In addition, the importance of lipid alterations in tumor 

cells was confirmed with this study.  

 

A new concept of carcinogenesis recently described by 

Da Silva et al.
[3]

 incorporates existing understanding of 

the genomic basis of cancer into a fundamentally 

different paradigm. The findings of the investigation 

suggest that cancer “conscripts” the human genome to 

meet its needs under conditions of systemic metabolic 

stress. Their studies support the hypothesis that cancer 

arises as a local manifestation of a state a systemic 

metabolic insufficiency. The authors‟ findings are 

consistent with inborn-like errors of metabolism and 

define a continuum from normal controls to elevated risk 

to invasive breast cancer. Similar results have been 

observed in other adenocarcinomas. A new early 

detection platform is described which supports a role for 

pre-existing, inborn-like errors of metabolism in the 

carcinogenesis process of all glandular malignancies. In 

this context,it would be interesting to compare the results 

from the present study to metabolomics data from colon 
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tissue samples of healthy patients to quantify whether the 

metabolic phenotype of the normal adjacent mucosa of 

colon cancer patients is more similar to the colon cancer 

patients or the healthy controls.  

 

The current demand for personalized treatment focuses 

on early identification of high-risk cancers for preventive 

treatment, instead of later progressive curative treatment. 

Metabolomics of intact tissue samples could help obtain 

biological understanding of cancer disease, and may, 

eventually, extend the existing clinical tools for cancer 

diagnosis and treatment. Metabolic profiles of cancer 

tissue are distinct from the normal adjacent counterparts. 

High resolution magic angle spinning nuclear magnetic 

resonance (HR-MAS NMR)is a new technique for 

metabolic profiling of intact tissue samples and provides 

a metabolite-derived phenotypic differentiation of the 

cancer, by describing response or resistance patterns, 

which in the future may result in improved stratification 

of patients for personalized treatment. Biopsies from 

cancer and normal adjacent tissue are sufficient for the 

analysis with HR-MAS.
[42] 

 

The use of biomarkers for prognostic or predictive 

interpretation of a disease state has a long tradition in 

clinical medicine.MR metabolomics could be used for 

identification of multivariate biomarkers to aid in early 

detection of cancer, stratify patients for the most efficient 

treatment, and predict survival.
[42] 

 

Another study based on GC-MSmetabolomics was able 

to identify and validate a diagnostic biomarker for 

CRC and even detect adenomas in blood. Further 

testing in a screening population (where prevalence is 

much lower) will help determine the utility of these 

diagnostic biomarkers for screening. Future efforts 

shall be directed at developing a quantitative assay, as 

well as further external validation using samples from 

multiple centers. In addition, further biomarker 

development will be important in hereditary forms of 

CRC, as well as CRC associated with inflammatory 

bowel disease.
[43] 

 

Based on the results of our investigation the role of 

sphingomyelins and lysoPCs as potential tissue 

biomarkers for colorectal cancer must be further 

investigated. Although potential interindividual 

differences can be present, this study shows the dramatic 

metabolomic changes in tumor tissue in the context of 

colorectal cancer. 
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