SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL EVALUATION OF NOVEL MANNICH BASE

S. Mohamed Rabeek, M. Sathyanarayanan and M. Seen Mubarak*

PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli – 620 020, Tamil Nadu, India.

*Corresponding Author: M. Seen Mubarak
PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli – 620 020, Tamil Nadu, India.

ABSTRACT

In an effort to establish new candidates with improved antimicrobial activity of N-(4-chlorophenyl)-2,6-bis(3-nitrophenyl)-4-oxopiperidine-3-carboxamide was synthesized, characterized and evaluated for antimicrobial activity. The desired compound was synthesized by the condensation of 4-chloroacetoacetonilide, 3-nitrobenzaldehyde with ammonium formate. Compound was characterized by IR, 1H-NMR, 13C- NMR and elemental analysis. They were also screened for antimicrobial activity against Klebsiella pneumonia, Staphylococcus aureus, Shigellady sentaeriae, Escheria coli, Pseudomonous aeruginosa, Streptococcus pneumonia and Proteus vulgaris.

KEYWORDS: 4-chloroacetoacetoanilide, 3-nitrobenzaldehyde, Synthesis, Spectral studies and Antimicrobial activities.

INTRODUCTION

Heterocycles form by far the largest of classical divisions of organic chemistry and are of immense importance biologically and industrially. The majority of pharmaceuticals and biologically active agrochemicals are heterocyclic while countless additives and modifiers used in industrial applications ranging from cosmetics, reprography, information storage and plastics are heterocyclic in nature. One striking structural features inherent to heterocycles, which continue to be exploited to great advantage by the drug industry, lies in their ability to manifest substituents around a core scaffold in defined three dimensional representations. For more than a century, heterocycles have constituted one the largest areas of research in organic chemistry. They have contributed to the development of society from a biological and industrial point of view as well as to the understanding of life processes and to the efforts to improve the quality of life. Among the approximately 20 million chemical compounds identified by the end of the second millennium, more than two-thirds are fully or partially aromatic and approximately half are heterocyclic.1

Heterocyclic compound with a piperidone skeleton are attractive target for organic synthesis and there is found to be significant in compound possessing aromatic substitution in 2\(^{nd}\) and 6\(^{th}\) position in the piperidone rings.2-4 Piperidin–4-one was prepared in the laboratory based on the literature method.4,10 These aspects prompted us to take a study on the heterals, particularly on piperidinone chemistry. Literature report shows that a wide range of 2,6- substituted piperidinone-4-ones have been prepared, the substituents being alkyl, aryl and chloro groups.10,16 The compound has been analyzed for its structural features and biological activity. The present study deals with synthesis of N-(4-chlorophenyl)-2,6-bis(3-nitrophenyl)-4-oxopiperidine-3-carboxamide. It was characterized by IR, 1H NMR, 13C NMR and biological studies.

MATERIALS AND METHODS

All the reagents and solvents used were of laboratory grade. The melting points of the compounds were determined by open capillaries on a Thomas Hoover apparatus and are uncorrected. The purity and homogeneity of compounds were checked using TLC technique. IR spectra were recorded using KBr pellets on Perkin Elmer 337 spectrophotometer, 1H NMR were recorded on Bruker WH 500 spectrophotometer using CHCl\(_3\) and DMSO as solvent.

EXPERIMENTAL METHODS

4-chloroacetoacetoanilide (1.6g; 0.1mol), ammonium formate (4g; 0.1mol) and 3-nitrobenzaldehyde (3.02gm; 0.03mol) were taken in a RB flask containing ethanol (10ml). The mixture was refluxed in a water bath with occasional shaking until the colour changed into red orange. The solution was cooled, and then ether (50ml)
was added. The filtered solution was transferred into conical flask and Conc. HCl (5ml) was added. A white precipitate was formed. The precipitate was washed with 5:1 ethanol: ether mixture and dried. Acetone (10ml), liquid ammonia (5ml), and excess of cold water were added. The precipitate was formed, filtered and dried. Then the product was recrystallised with ethanol. The product was dried, m.p 220-222°C.

SCHEME I: N-(4-CHLOROPHENYL)-2,6-BIS(3-NITROPHENYL)-4-OXOPIPERIDINE-3-CARBOXAMIDE.

RESULTS AND DISCUSSION

Spectral characterization
N-(4-chlorophenyl)-2,6-bis(3-nitrophenyl)-4-oxopiperidine-3-carboxamide Yield: 86-92%; mp: 220-222°C. FT-IR (KBr): 3406 (ʋN-H), 3064 (ʋaromatic-CH), 3030 (ʋaliphatic-CH), 1714 (ʋC=O), 704 (ʋC-Cl), 1347 (ʋC-N) cm⁻¹. ¹H NMR (500MHz, DMSO-d₆, δ in ppm): 7.97 (s, N-H, 2º amide H); 7.09 – 7.55 (m, aromatic-H); 4.175 – 4.669 (d, benzylic-H at C₂); 3.363 – 3.892 (d, Methine-H at C₃); 2.071 s, NH proton at ring). ¹³C NMR (500MHz, DMSO-d₆, δ in ppm): 201 (>C=O), 161, 157, 149, 120.

BIOLOGICAL ACTIVITY

The obtained results are tabulated as following Table-1.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the Micro Organisms</th>
<th>30 µg/ml</th>
<th>35 µg/ml</th>
<th>Solvent Control</th>
<th>Standard (Amoxycillin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klebsillapneumonia</td>
<td>17</td>
<td>18</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Staphylococcus aureus</td>
<td>16</td>
<td>20</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Shigelladysenteriae</td>
<td>16</td>
<td>17</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Escherichia coli</td>
<td>18</td>
<td>20</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Pseudomonas Aeruginosa</td>
<td>15</td>
<td>19</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Streptococcus pneumonia</td>
<td>20</td>
<td>18</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Proteus vulgaris</td>
<td>16</td>
<td>18</td>
<td>-</td>
<td>8</td>
</tr>
</tbody>
</table>

Standard – Amoxylillin 10µg/disc for bacteria; Solvent – DMSO.

Followed by incubation at 37°C for 24 Hrs and 25°C for two days for bacteria and fungi were observed for zone of inhibition. The zone of inhibition was measured by using a standard scale. The diameter of the zone of inhibition directly proportional to the amount of active constituent present in the sample. The synthesized compound has high degree of inhibition towards Klebsillapneumonia, Staphylococcus aureus, Shigelladysenteriae, Escherichia coli, Pseudomonas Aeruginosa, Streptococcus pneumonia and Proteus vulgaris.

DISCUSSION

❖ The microorganism of Klebsillapneumonia in microbial activity 30= 17mm, 35=18mm then standard 10mm.
The microorganism of *Staphylococcus aureus* in microbial activity 30= 16mm, 35=20mm then standard 9mm.

The microorganism of *Shigelladysenteriae* in microbial activity 30= 16mm, 35=17mm then standard 9mm.

The microorganism of *Escherichia coli* in microbial activity 30= 18mm, 35=20mm then standard 12mm.

The microorganism of *Pseudomonas aeruginosa* in microbial activity 30= 15mm, 35=19mm then standard 11mm.

The microorganism of *Streptococcus pneumonia* in microbial activity 30= 20mm, 35=18mm then standard 11mm.

The microorganism of *Proteus vulgaris* in microbial activity 30= 16mm, 35=18mm then standard 8mm.

CONCLUSION

A simple and elegant method for the synthesis of the compound described in this work. Nitrogen containing piperidine-4-ones are obtained, when more convenient ammonium formate is employed instead of the deliquescent ammonium acetate. The synthesized compound was characterized by FT-IR, 1H-NMR, 13C-NMR and biological activity.

ACKNOWLEDGEMENT

The Authors thanks the Principal and Management committee members, Jamal Mohamed College, Trichy-620 020 for providing necessary facilities. We are very thankful to the Sastra University, Thanjavur collected for NMR studies and also Periyar Maniyammal Pharmaceuticals College and Research Institute, Trichy for their help in antimicrobial susceptibility testing.

REFERENCES