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INTRODUCTION TO QUANTUM COMPUTING 
 

Quantum Computing (QC) is underpinned by quantum 

mechanics, and hence often explained through concepts 

of superposition, interference, and entanglement. In 

quantum physics, a single bit can be in more than one 

state simultaneously (i.e. 1 and 0) at a given time, and a 

QC system leverages this very behavior and recognizes 

it as a qubit (Quantum bit). Having roots in quantum 

physics, QC has the potential of becoming the fabric 

of tomorrow’s highly powerful computing 

infrastructures, enabling the processing of gigantic 

amounts of data in real time. Quantum computing has 

recently seen a surge of interest by researchers who are 

looking to take computing prowess to the next level as 

we move past the era of Moore’s law, however, there 

is a need for an in-depth systematic survey to explain 

possibilities, pitfalls, and challenges.
[1]

 

 

Quantum computing has rapidly advanced in recent years 

due to substantial development in both hardware and 

algorithms. These advances are carrying quantum 

computers closer to their impending commercial utility. 

Drug discovery is a promising area of application that 

will find a number of uses for these new machines.
[2]

 As 

a prominent example, quantum simulation will enable 

faster and more accurate characterizations of molecular 

systems than existing quantum chemistry methods. 

Furthermore, algorithmic developments in quantum 

machine learning offer interesting alternatives to 

classical machine learning techniques, which may also 

be useful for the biochemical efforts involved in early 

phases of drug discovery. Meanwhile, quantum hardware 

is scaling up rapidly into a regime where an exact 

simulation is difficult even using the world’s largest 

supercomputers. We review how these recent advances 

can shift the paradigm with which one thinks about drug 

discovery, focusing on both the promises and caveats 
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ABSTRACT 
 

Quantum computing hardware and software have made enormous strides over the last years. Questions around 

quantum computing are impact on research and society has changed from "if" to "when/how". Classical computing 

works by processing bits, or 0s and 1s representing electrical signals of on and off. Quantum computing employs a 

very different technique for information processing. It uses qubits, which can exist as both a 1 and 0 at the same 

time,and uses the properties of subatomic particles in quantum physics such as interference, entanglement, and 

superposition to extendcomputational capabilities to hitherto unprecedented levels. The efficacy of quantum 

computing for important verticals such as healthcare where quantum computing can enable important 

breakthroughs in the development of life-saving drugs, performing quick DNA sequencing, detecting diseases in 

early stages, and performing other compute-intensive healthcare related tasks isnot yet fully explored. Involvement 

of multiple stakeholders in drug discovery and development, even the simple healthcare problems become complex 

due to classical approach to treatment. In the Covid-19 era where quick and accurate solutions in healthcare are 

needed along with quick collaboration of stakeholders such as patients, insurance agents, healthcare providers and 

medicine supplier etc., a classical computing approach is not enough. A semi-structured interview approach is 

adopted to gauge the expectations of professionals from drug discovery and development regarding quantum 

computing. A structured approach of coding, using open, axial and selective approach is adopted to map the themes 

under quantum computing for drug discovery and development. The findings indicate the potential applications of 

quantum computing for pharmaceuticalalong with patients to have precise and quick solutions to the problems, 

where greater accuracy and speed can be achieved. Existing research focuses on the technological background of 

quantum computing, whereas this study makes an effort to mark the beginning of quantum computing research 

with respect to organizational management theory. 
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associated with each development. In particular, we 

highlight how hybrid quantum-classical approaches to 

quantum simulation and quantum machine learning 

could yield substantial progress using noisy-intermediate 

scale quantum devices, whereas fault-tolerant, error-

corrected quantum computers are still in their 

development phase.
[3]

 

 

Drug discovery is the process of developing a drug from 

an initial hypothesis to a fully commercialized product. 

This process can often take more than a decade and 

billions of dollars in expenditure before a molecule can 

be recognized as a drug.
[1]

 A significant portion of these 

resources is invested in the identification of molecules 

that exhibit significant medicinal activity against a 

disease, usually referred to as a hit. Most of the research 

in drug discovery focuses on hits of low molecular 

weight (< 900 Daltons, with sizes of 1 nm or less
[2]

), 

which constitute around 78% of the drug market.1 In this 

case, the medicinal activity of a particular drug candidate 

or ligand is associated to its ability to bind to a biological 

target, usually a protein, whose activity regulates the 

metabolism of the disease. Typically, the first stage in 

the discovery process is to generate a library of potential 

drug candidates that is subsequently screened based on 

medicinal activity to identify hits.
[3]

 Along with the 

activity, other factors that determine the efficacy and 

potency of the hits, such as the absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) profile, 

among other pharmacokinetic properties, are optimized 

to produce a smaller set of better candidates called lead 

compounds.
[4]

 Further screening and optimization 

generally delivers a small set of leads that proceed 

through the stages of drug development and clinical trials 

before one of them becomes a viable commercial 

product. Traditionally, the search for hits was 

accomplished by high-throughput screening (HTS) on 

large molecular libraries using in vitro activity 

experiments. These searches generally have low hit rates 

and require the synthesis of a large number of 

compounds, which in turn demands a significant 

investment in resources and time.
[4]

 This approach was 

completely transformed by the advent of commercial 

computers in the 1970s and 1980s, which enabled 

computational chemistry and statistical analysis, among 

other tools
[5]

, to accelerate HTS, improve the hit rate, and 

increase the quality of the leads obtained in the 

process.
[4]

 The increase in computational power and the 

improvement of computational chemistry techniques 

fostered the practice of computer-aided drug design 

(CADD), which constitutes a significant portion of the 

drug discovery pipeline today.
[3]

 The ultimate goal of 

CADD is to answer the inverse-design question: What 

are the best chemical structures associated with a desired 

therapeutic effect?.
[6,7]

 To answer this question 

accurately, CADD faces two main challenges: first, the 

accurate simulation of the interaction of drug candidates 

with biological targets, and second, accurate statistical 

modeling of activities and ADMET profiles based on the 

available simulated and experimental data. The former is 

largely constrained by the computational cost of 

simulating the physics of molecular systems for both 

small molecules and biological targets. The latter is 

constrained by the effectiveness of existing statistical 

techniques. Quantum computing could potentially shift 

the paradigm with which one thinks about quantum 

chemical simulation. By efficiently preparing highly 

entangled states that are otherwise intractable to describe 

on classical computers, quantum computers can perform 

certain important quantum chemistry and machine 

learning tasks in ways that are beyond the ability of 

classical computers. Furthermore, efficient manipulation 

of quantum states also allows for certain linear algebraic 

operations to be performed far more efficiently than what 

is possible with classical devices.
[4]

 With these unique 

abilities, quantum computing promises to deliver 

efficient and highly accurate solutions to otherwise 

intractable problems, for instance finding the ground 

state energy of a molecular system,
[8]

 As we discuss in 

detail in Section 3, a common method for treating 

electronic structure calculation on a quantum computer is 

via second quantization, where an electronic state over N 

spin orbitals is represented using N qubits—one qubit for 

each spin orbital. In the coming years, we are 

anticipating quantum devices with N > 50 qubits,
[9,10]

, 

making it possible to map onto a quantum computer 

problems whose exact solution (say, via exact 

Hamiltonian diagonalization) is beyond current classical 

computation. Quantum machine learning is also a rapidly 

emerging field exploring how quantum computers can 

perform machine learning tasks with improved 

performance over classical computers.
[11]

 As we discuss 

in Section 3.2, there are plausible reasons to believe that 

quantum computers may enable solutions to machine 

learning tasks that are beyond classical computation. 

Pinpointing the precise regimes of quantum advantage is 

a main mission of the field of quantum machine learning. 

In this paper, we review developments in quantum 

computing relevant to drug discovery through quantum 

chemistry and machine learning, outlining the promises 

as well as caveats. This paper is organized as follows: 

First, we describe the general pipeline of CADD and 

some of the methodologies employed in the industry and 

their challenges. Second, we outline some of the latest 

quantum computing algorithms that we consider relevant 

for CADD, namely quantum simulation and quantum 

machine learning. Finally, we share our perspective on 

how these methods could benefit CADD by addressing 

some of its biggest challenges. The purpose of this 

perspective is to initiate a mutually beneficial cross-

disciplinary discussion and collaboration between the 

fields of CADD and quantum computing.
[5]

 For the 

quantum computing community, such dialogue will help 

to outline the practically useful regimes where quantum 

computers may have an advantage over classical 

counterparts. For the drug discovery community, our 

hope is to bring an alternative perspective on classical 

computing for solving some of the crucial computational 

problems, which arise in practice. Our approach is by no 

means exhaustive, and for more in-depth discussion of 
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specific technical subjects, the reader is encouraged to 

refer to the relevant citations.
[6]

 

 

Pharma’s focus on molecular formations makes it 

well suited for QC 

Identifying and developing small molecules and 

macromolecules that might help cure illnesses and 

diseases is the core activity of pharmaceutical 

companies. Given its focus on molecular formations, 

pharma as an industry is a natural candidate for quantum 

computing.
[7]

 The molecules (including those that might 

be used for drugs) are actually quantum systems; that is, 

systems that are based on quantum physics. QC is 

expected to be able to predict and simulate the structure, 

properties, and behavior (or reactivity) of these 

molecules more effectively than conventional computing 

can. Exact methods are computationally intractable for 

standard computers, and approximate methods are often 

not sufficiently accurate when interactions on the atomic 

level are critical, as is the case for many compounds. 

Theoretically, quantum computers have the capacity to 

efficiently simulate the complete problem, including 

interactions on the atomic level. As these quantum 

computers become more powerful, tremendous value 

will be at stake.
[8]

 

 

QC could make current CADD tools more effective by 

helping to predict molecular properties with high 

accuracy. That can affect the development process in 

several ways, such as modeling how proteins fold and 

how drug candidates interact with biologically relevant 

proteins. Here, QC may allow researchers to screen 

computational libraries against multiple possible 

structures of the target in parallel.
[9]

 Current approaches 

usually restrict the structural flexibility of the target 

molecule due to a lack of computational power and a 

limited amount of time. These restrictions may reduce 

the chances of identifying the best drug candidates.
[10]

 In 

the longer term, QC may improve generation and 

validation of hypotheses by using machine-learning 

(ML) algorithms to uncover new structure-property 

relationships. Once it has reached sufficient maturity, QC 

technology may be able to create new types of drug-

candidate libraries that are no longer restricted to small 

molecules but also include peptides and antibodies. It 

could also enable a more automated approach to drug 

discovery, in which a large structural library of 

biologically relevant targets is automatically screened 

against drug-like molecules via high-throughput 

approaches.
[11]

 

 

One could even envision QC triggering a paradigm shift 

in pharmaceutical R&D, moving beyond today’s 

digitally enabled R&D toward simulation-based or in 

silico drug discoveries—a trend that has been seen in 

other industries as well.
[12]

 

 

The following QC use cases apply to different aspects of 

drug discovery and will emerge at different points over 

an extended timeline. All of them, however, may enable 

more accurate and efficient development of targeted 

compounds.
[13]

 

 

Overview of computational methods in drug 

discovery  

At the risk of gross simplification, we summarize the 

overall drug discovery process. The usual drug discovery 

pipeline requires the identification and characterization 

of a suitable biological target, which can be effectively 

proved to intervene in the mechanism of disease. This 

step often requires intense experimentation as well as 

extensive statistical analysis of the collected data. Once a 

biological target is in place, the next step is the search for 

hits, which usually involves extensive biological and 

virtual screening over libraries of molecules, or the 

generation of completely new compounds (de novo 

design), which must be synthesized and tested.
[14]

 The 

group of hits collected on this stage undergoes further 

optimization of the pharmacokinetics and ADMET 

properties, involving a combination of biological and in 

silico tests, to generate the final group of leads. These 

stages, going from target identification to lead 

optimization, benefit the most from CADD 

techniques.
[12,13]

 The subsequent steps in the drug 

discovery pipeline, which involve clinical studies in 

animals and humans prior to the Federal Drug 

Administration review and approval, are less intensive in 

the use of CADD tools but might require further rounds 

of lead optimization. The final success of a drug 

discovery campaign depends, to a great extent, on the 

quality of the CADD approaches applied in the early 

stages. CADD approaches employed on the stages of hit 

search, lead discovery, and lead optimization are 

generally classified into two main categories.
[4]

 

 

CADD relies on knowledge of the target protein three-

dimensional (3-D) structure to predict the ability of a 

candidate to bind to the target, whereas ligand-based 

CADD employs information of known active and 

inactive molecules to predict the activity of new 

candidates. Structure-based CADD is preferred over 

ligand based if the structural information of the 

biological target is available. This information is usually 

obtained experimentally using nuclear magnetic 

resonance (NMR) spectroscopy and X-ray 

crystallography studies on crystallized protein.
[4]

 

Predicting the protein structure from the knowledge of 

the amino acid sequence requires simulating the protein 

folding process, which is so far out of reach except for 

small peptides and fast folders.
[14]

; however, in the 

absence of experimental structures, it is still possible to 

approximate the 3-D structure of an unknown target 

protein by comparing its sequence with related known 

proteins, a process known as comparative modeling.
[15]

 

Along with the structure, it is necessary to characterize 

the target by identifying the binding (active) sites that are 

responsible for the biological activity and where the 

potential drug candidate (ligand) is expected to bind. 

Assuming that a model for the target structure is 

available, structured-based CADD approaches attempt to 
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find suitable drug candidates by analyzing the interaction 

between the candidate (ligand) and the biological target, 

generally a protein; therefore, most CADD approaches 

require the following: first, determining the pose or 

conformation of the ligand that fits best the binding site 

of the target, and second, assigning a numerical score 

that expresses the strength of the interaction of the 

ligand-target complex.
[16]

 The process of finding the best 

conformation is generally called docking and the process 

of computing the affinity is referred as scoring.
[4]

 These 

procedures are generally intertwined since docking 

requires a score function that ranks different 

conformations according to their ability to form bound 

ligand-protein complexes. Extensive sampling of 

conformations is often required in structured-based 

CADD approaches to account for the mobility of protein 

and ligands in biological conditions (aqueous solutions at 

room temperature).
[17]

 When no information of the 3-D 

tertiary structure of the protein can be obtained, ligand-

based CADD is the main tool. In this case, the selection 

of the candidates proceeds by comparison of the 

structures with a set of known active ligands using 

molecular similarity indexes and by evaluation of the 

activity using a quantitative.
[15]

 

 

Target identification and validation 

During target identification, QC can be leveraged to 

reliably predict the 3-D structures of proteins. Obtaining 

high-quality structural data is a lengthy process often 

leading to low-quality results. Despite all efforts, 

researchers have yet to crystallize many biologically 

important proteins—be it due to their size, solubility (for 

example, membrane proteins), or inability to express and 

purify in sufficient amount. Pharma companies 

sometimes develop drugs without even knowing the 

structure of a protein—accepting the risk of a trial-and-

error approach in subsequent steps of drug 

development—because the business case for a given 

drug is potentially so strong.
[16]

 

 

AlphaFold, developed by Google’s DeepMind, was a 

breakthrough in AI-driven protein folding but has not 

resolved all of the challenges of classical computing-

based simulation, including, for example, formation of 

protein complexes, protein-protein interactions, and 

protein-ligand interactions. It’s the interactions that are 

most difficult to classically solve and, thus, may benefit 

from QC, which allows for the explicit treatment of 

electrons. Additionally, QC may allow for strong 

computational efficiencies here given that Google’s AI 

model—which is trained on around 170,000 different 

structures of protein data—requires more than 120 high-

end computers for several weeks.
[17]

 

 

Hit generation and validation 

QC’s ability to parallel process complex phenomena 

would be particularly valuable during hit generation and 

validation. With existing computers, pharma companies 

can only use CADD on small to medium-size drug 

candidates and largely in a sequential manner. 

Computing power is the bottleneck. With powerful 

enough QC, pharma companies would be able to expand 

all use cases to selected biologics as well, for instance, 

semi-synthesized biologics or fusion proteins, and 

perform in silico search and validation experiments in a 

more high-throughput fashion. This use case would go 

beyond the identification of the protein and eventually 

encompass almost the entire known biological world. 

With a robust enough hit-generation and validation 

approach, this step would already deliver potential lead 

molecules that are much easier and quicker to optimize. 

The process of hit search generally involves HTS of a 

database of candidate compounds. Traditionally, this 

process has required the synthesis and experimental 

determination of the activity of the compounds, which is 

extremely expensive and slow. Nowadays, the process is 

accelerated using virtual HTS (vHTS). Different score 

functions are employed to rank the activity of the 

candidates depending on whether a structured-based or 

ligand-based approach is used. Some ligand-based 

approaches score the candidates based on their similarity 

with a set of known active compounds. Another option is 

QSAR, which constructs a statistical model based on 

experimental information of the activities and chemical 

information of the ligands. In both approaches, the 

chemical information is expressed with molecular 

descriptors that encode physicochemical and structural 

information of the molecules in a digital format, suitable 

for comparison. Molecular descriptors can be generated 

by knowledgebased, graph-theoretical, molecular 

mechanical, or quantum-mechanical methods . Arguably, 

the most popular descriptors are molecular fingerprints, 

which encode various molecular properties as predefined 

bit settings. Other descriptors are computed solely from 

the 2-D or 3-D topology of the molecule based on graph-

theoretical methods.
[18]

 

 

Lead optimization 

During lead optimization, which is a top-three parameter 

to improve R&D productivity,
1
 QC may allow for 

enhanced absorption, distribution, metabolism, and 

excretion (ADME); more accurate activity and toxicity 

predictions for organ systems; dose and solubility 

optimization; and other safety issues. Once hit 

compounds have been identified, they enter an 

optimization phase to produce a smaller set of better 

candidates, called leads. The set of leads undergoes 

further optimization in a process that iterates between 

CADD development and in vitro and animal 

experiments.
[4]

 The purpose of this second phase of 

screening is to optimize the druglike properties of the hit 

compounds, which includes not only the biological 

activity, but also the ADMET profile and other 

pharmacokinetic properties. The general assumption 

behind this process is that small changes on the chemical 

structure will produce incremental changes of the 

druglike properties; therefore, the optimization involves 

the synthesis of the drug-candidates along with testing of 

their biological activities accompanied by CADD.
[19]
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Target identification and characterization  

The initial stage of drug discovery concerns collecting 

evidence of therapeutic effects in activation or inhibition 

of certain biological pathway associated to a disease. The 

biological entity responsible for such response is called 

the target, which is generally a protein. In a broader 

sense, the term could also refer to the genes or RNA 

associated to the protein. Ideal targets should be 

―druggable,‖ meaning that the drug candidate should be 

able to access the target and affect a biological response 

that is measurable in vitro and in vivo. The identification 

of suitable targets and their corresponding validation by 

studies of the mechanism of action increases the chance 

of success during the discovery process and allows one 

to foresee side effects associated to the modulation of the 

target.
[12]

 Traditional approaches to target identification 

employ chemical proteomic techniques, such as affinity 

chromatography, biochemical fractionation, and 

radioactive ligand binding assays.
[21]

 These methods 

employ a small molecule with proven activity to isolate 

the target from a mixture of other proteins. In the case of 

affinity chromatography, the most widely used approach, 

the active compound is immobilized in a porous matrix. 

Subsequently, a solution containing the protein mixture 

is passed through the matrix, and those proteins that bind 

to the immobilized active compound are retained. In the 

final stage, the retained proteins, which correspond to the 

potential targets, are eluted from the matrix.
[22–24]

 

 

Data linkage and generation 

The metalevel of R&D very much consists of linking 

appropriate data together—for instance, creating sensible 

connections between data points through effective 

(semantic) management. The more complex the 

biological information that can be processed, the more 

extensive the graphs that inform the drug discovery 

research process become. There is currently research on 

―topological data analysis‖ under way that aims to 

identify ―holes‖ and ―connections‖ across large data 

sets.
2
 This may at some point enable R&D specialists to 

identify concrete cases and ―industry verticals‖ where 

such algorithms are applicable, for example, in 

identifying connections across brain cells in response to 

a drug.
[19]

 

 

Moreover, QC could be used to ―deepfake‖ missing data 

points throughout the research process, that is, generate a 

type of fake data by using ML algorithms. This could be 

particularly useful wherever there is a scarcity of data, 

such as in rare diseases that can then be mitigated 

through artificial data sets. QC will set a new bar here 

regarding speed in training ML models, amount of initial 

data needed, and level of accuracy.
[20]

 

 

Clinical trials 

Clinical trials could be optimized through patient 

identification and stratification and population 

pharmacogenetic modeling.
[3]

 In trial planning and 

execution, QC could optimize the selection of the trial 

sites. QC could also augment causality analyses for side 

effects to improve active safety surveillance.
[21]

 

 

Beyond research and development 

While the potential value of QC in pharma R&D is 

immense, it will also likely play a role further down the 

value chain. In the production of active ingredients, QC 

may aid in the calculation of reaction rates, optimize 

catalytic processes, and, ultimately, create significant 

efficiencies in the development of new product 

formulations. In the business-related value pools, QC in 

pharma could include the optimization of logistics (for 

instance, the optimization of on-site flows of materials, 

heat, and waste in production facilities) and 

improvements in the supply chain. Finally, toward 

market access and commercial, QC may even enable 

automatic drug recommendations.
[22]

 

 

Quantum computing  

Most digital devices use bits as the building blocks for 

information processing. Each bit expresses a discrete, 

―classical‖ state of 0 or 1. Devices that perform 

computation by manipulating bits are referred to as 

classical computers. Quantum computers manipulate 

quantum states of matter for performing computation. A 

standard choice for constructing those quantum states is 

to combine two-level quantum systems called qubits. By 

manipulating the qubit states and taking advantage of 

uniquely quantum-mechanical phenomena, such as 

superposition and entanglement, quantum computers can 

perform computational tasks in ways that are beyond 

what is possible on their classical counterparts. A 

predefined way of manipulating quantum states to solve 

a computational problem is referred to as a quantum 

algorithm. In many cases, by analyzing the number of 

steps that quantum algorithms take, it can be proved that 

they outperform classical algorithms for specific 

problems with reduced number of steps required. This 

capability is known as quantum speedup. Well-known 

examples of quantum speedup include Shor’s algorithm 

for factorization, Grover search, and simulating quantum 

systems. On the experimental side, a wide variety of 

physical systems have been explored as candidates for 

quantum computers. Some of the hardware platforms, 

such as ion traps and superconducting qubits, have been 

scaling up rather rapidly in recent years toward the 

threshold regime, beyond which it becomes intractable to 

simulate these physical systems with a classical 

computer. Recent results in both theory and experiments 

have pointed to how the so-called noisy intermediate-

scale quantum (NISQ) devices
[20]

 with moderate numbers 

of qubits can in principle produce quantum states whose 

measurement outcomes follow distributions that are 

justifiably hard to sample from on a classical 

computer.
[23]

 

 

Quantum machine learning 

In recent years, there has been a rapidly expanding area 

of research seeking quantum techniques for enhancing 

machine learning methods. Although the full extent to 

javascript:void(0);
javascript:void(0);
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which quantum computers can provide advantages on 

machine learning is far from known, there are a few 

heuristic arguments to support the belief that such 

advantages may exist. (1) Quantum computers can 

generate quantum states that give rise to probability 

distributions that are justifiably hard to sample from 

classically. Because of this ability to generate statistical 

patterns that are hard to generate classically, one hopes 

that quantum computers may also be able to recognize 

patterns in data that are hard to recognize classically.
[11]

 

(2) For a physical system of n qubits, the space in which 

the quantum state of the n-qubit system dwells has 

dimension 2n. Such exponential size may allow for an 

exponentially more compact encoding of classical 

information. For instance, a quantum state of merely 30 

qubits can represents a unit vector of length 230 ¼ 

1;073;741;824. In some cases, processing the 30-qubit 

state for machine learning purposes may be more 

advantageous than treating a vector of more than a 

billion entries on classical hardwares. (3) Many 

(classical) machine learning algorithms involve a large 

amount of linear algebraic operations, whereas quantum 

computers are known to provide speedups in problems 

related to some of the most elementary linear algebraic 

operations, such as Fourier transforms, vector inner 

products , matrix eigenvalues and eigenvectors, and 

solving linear systems of equations. The quantum 

techniques therein can be used as a toolkit for building 

quantum machine algorithms.
[24]

 

 

Opportunities for quantum computing in drug 

discovery 

The potential to efficiently deliver quantum chemical 

calculations with accuracy comparable to FCI methods 

and find solutions to optimization problems can impact 

several of the areas of CADD described before. Here, we 

outline a few potential use cases for quantum computing 

an important part of the input concerns the structure of 

the target protein. Some progress has been made in the 

past decade on quantum techniques for protein folding 

based on the amino acid sequence. In particular, the 

quantum computing community has considered two 

simple models: the hydrophobic-polar model and the 

Miyazawa–Jernigan model, both of which model the 

protein as a self-avoided walk on a lattice. Solutions in 

both quantum annealers and gate-model quantum 

devices4 have been explored. Current capability of these 

methods is limited to proof-of-concept examples, such as 

Chignolin and TrpCage, small peptides with less than 21 

amino acid residues. Significant venture capital has been 

invested in quantum computing for life sciences,5 and 

future work will further unveil the magnitude of quantum 

advantage for larger protein folding problems as 

quantum devices scale up. For molecular docking, one of 

the prevalent methods is atomistic modeling, which 

relies on force-field simplifications whose parameters 

need to match with quantum-mechanical calculations. 

With the advent of VQEs and the quantum phase 

estimation algorithm, the size of physical systems that 

can be treated with accurate ab initio quantum 

calculations will be greatly expanded as quantum devices 

scale up. This allows for force-field constructions based 

on exact quantum calculations for molecular fragments 

that are larger than what can be handled using existing 

quantum chemical methods. In de novo design, one of 

the pressing issues is synthesizability of a drug 

candidate, which involves simulation of different 

reaction paths. Quantum computers offer an avenue to 

potentially tackle electronic structure problems in the 

strongly correlated regime using, which would allow us 

to simulate transition states and thermodynamic 

properties to accuracies comparable to FCI methods. As 

a result, this can improve the effectiveness of de novo 

design. One of the bottlenecks for vHTS is the efficiency 

and accuracy with which one can calculate the scoring 

function. Ideally, the scoring function should be directly 

based on binding affinity, which comes from ab initio 

quantum-mechanical calculations, whereas in practice, 

empirical approximations are used. Hence, with the 

quantum subroutine boosted by quantum computers, one 

may evaluate the scoring functions more efficiently and 

accurately. This could be achieved using methods where 

different parts of the system are computed with different 

levels of approximations, such as QM/MM. The ability 

of computing binding affinities will also have a major 

impact on the lead optimization phase of drug discovery 

and mechanism of action studies, where understanding 

and quantitatively predicting the interaction of a drug 

candidate with multiple biological targets provides clues 

into toxicity, pharmacokinetics, and multitarget action. 

For ligand-based drug discovery, QSAR models have, in 

many cases, incorporated quantum-mechanical 

properties. Generally, the quality and accuracy of these 

properties significantly affect the quality and predictivity 

of the model. Most of these approaches use descriptors 

derived from DFT calculations, and quantum 

computation could serve as a more efficient and accurate 

alternative for those calculations. Another major aspect 

of QSAR is statistical and machine learning models. For 

example, in virtual screening, a common technique for 

classification in chemical space is by using kernels that 

map molecular structures to highdimensional features 

(see, for example, the ―graph kernel‖ that has been used 

in cheminformatics literature). Commonly evaluating the 

kernel function requires handling vectors of extremely 

high dimensions, making computational efficiency a 

major issue for deploying kernel-based classification 

methods. In chemoinformatics, kernels accounting for 

the similarity between molecules are usually calculated 

from fingerprints or descriptor vectors using either some 

standard functions (linear, polynomial, Gaussian) or 

other popular similarity measures, such as Euclidean 

distance or Tanimoto coefficient.
[25]

 

 

CONCLUSION 
 

As quantum hardware becomes more powerful, we 

expect quantum algorithms for chemistry and machine 

learning to be progressively integrated into CADD. 

While FTQC devices are not expected to be available 

within the next decade, NISQ devices would be more 
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likely commercialized in the next two to four years. The 

size of the problems that will be solved on these 

computers will be linked to their specifications (number 

of qubits and coherence time). For instance, quantum 

devices with qubit count N being a few hundreds of 

qubits and OðNÞ coherence time would be able to 

perform quantum simulation on molecular systems with 

the same number of spin orbitals using VQE. Using 

techniques such as active space approach, we could study 

molecules of the size of typical drug candidates. This 

type of calculation could be useful in the 

parameterization of force fields, in synthesizability and 

bio-catalysis studies, and in the generation of QSAR 

descriptors. Calculation of binding energies using 

QM/MM techniques will likely require in the order of a 

few thousand qubits and will take advantage of the 

integration with classical tools. We are entering a new 

era of quantum computing where quantum hardware 

currently available already allow for rapid prototyping of 

quantum algorithms. As a result, the field is open to early 

explorations of how quantum devices can be used for 

concrete application settings. Drug discovery is a unique 

area in the sense that it benefits from advances in both 

quantum chemistry and machine learning, making it one 

of the first areas that are likely to adopt quantum 

computing into its pipelines. This perspective is an 

invitation to both the quantum computing and the drug 

discovery communities to bridge the technical gap 

needed to fully materialize the potential of quantum 

computing for drug discovery. 
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