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INTRODUCTION 
 

Colorectal cancer (CRC) is one of the most highly 

prevalent types of cancer, causing high mortality rates in 

developed and developing countries. According to the 

American Cancer Society, about 1.7 million new cancer 

cases and around 600,000 deaths from the disease 

occurred in the United States in 2015, among which 

almost 100,000 new cases and 50,000 deaths were 

attributed to CRC.
[1,2]

 

 

The need for non-invasive, specific and accurate 

screening methods for the early identification of CRC 

has led several researchers to use molecular techniques 

such as genomics, proteomics, and more recently, 

metabolomics to identify serum biomarkers.
[3] 

Da Silva 

et al. in 2018 identified metabolic changes consistent 

with inborn-like errors that define a continuum from 

normal controls to elevated risk for invasive breast 

cancer and other types of adenocarcinoma.
[4]

 

Metabolomics is the study of low-molecular weight 

metabolites in biological matrices. It is downstream of 

genomics, transcriptomics, and proteomics; thus, 

changes at the metabolomic level not only reflect 

genomic and proteomic alterations but also the effects of 

environmental factors. Differences in metabolite levels 

between a patient and a healthy individual are used to 

identify metabolic pathways for a particular disease. In 

recent years, metabolomic studies have been successfully 

used to identify biomarkers and altered metabolic 

pathways in various types of cancer, including gastric,
[5]

 

brain,
[6]

 breast,
[7]

 and lung cancer.
[8]

 

 

Serum has been the specimen of choice for the 

identification of biomarkers as it reflects the metabolite 

profiles at the moment of sample collection. Changes 

observed in metabolite levels relative to normal profiles 

may serve as important indicators of disease states. 

Metabolomics has been used to identify early biomarkers 
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ABSTRACT 
 

Metabolomics is an emerging analytical tool in oncology research which allows the identification of specific 

biomarkers and helps improve clinical results. The present study aimed to identify metabolic conditions in patients 

with colorectal cancer. This investigation used mass spectrometry to analyze the plasma of patients with colorectal 

adenocarcinoma. In the study, 85 plasma samples were analyzed and metabolite extraction was performed using 

kits. A targeted metabolomic approach with the Biocrates Absolute IDQ® p180 kit was used to quantify 

metabolites of various biochemical classes. The statistical analysis included data normalization and quality control, 

principal component analysis, hierarchical cluster analysis, univariate statistics with significance testing, and 

analysis of fold changes. The comparison between plasma and tissue samples showed differences in only a few 

analytes. The application of more restricted statistics with correction to control the false discovery rate (Benjamini-

Hochberg adjustment) often did not show significant changes in the different groups of patients. Several 

sphingomyelins were significantly different in more than one group. The analysis without adjustment yielded 

significantly different metabolites, mainly sphingomyelins and phospholipids. 
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of CRC. Because altered metabolites can be influenced 

by biological and environmental factors, it is important 

to determine common differentiating metabolites, 

identified in previous studies, which act as potential 

biomarkers for CRC.
[3]

 

 

The present study aimed to identify potential 

metabolomic changes using mass spectrometry to 

analyze plasma samples of patients with colorectal 

adenocarcinoma. 

 

MATERIAL AND METHODS 
 

Study samples 

In this study, 85 plasma samples from patients with CRC 

were analyzed. Patients with a scheduled colorectal 

resection after a CRC diagnosis were recruited. Sample 

collection was performed within 30 minutes after the 

beginning of the surgery. Patients undergoing 

chemotherapy and/or radiotherapy prior to surgery were 

excluded from the study. 

 

All patients provided an informed written consent, and 

the research plan was approved by the Barretos Cancer 

Hospital – Ethics Committee of Pio XII Foundation 

under no. 1,570,292 and by the Ethics Committee of 

UNIFESP under no. 1,686,367. 

 

Clinical and laboratory data were collected, including 

patient information (age, gender, relapse, survival) as 

well as tumor sample characteristics (tumor site, 

differentiation grade, venous invasion, lymph node 

invasion, perineural invasion, peritumoral infiltration, 

TNM stage, and AJCC staging). The samples were 

stored at -80°C immediately following collection until 

they were processed for plasma analysis. The collection 

was checked by the study technician in the pathology 

laboratory and in the pre-operative room before each 

resection procedure. All samples were shipped to 

Biocrates Life Sciences AG, Innsbruck, Austria, for 

plasma analysis and statistical data analyses. 

 

Metabolite profiling 

For plasma analysis, the samples were homogenized 

using Precellys® with ethanol phosphate buffer. For 

metabolite level measurements, the samples were 

centrifuged and the supernatants were used for analysis. 

The Biocrates Absolute IDQ® p180 kit was used to 

quantify metabolites of different biochemical classes, 

including amino acids, biogenic amines, acylcarnitines, 

glycerophospholipids, sphingolipids, and 

monosaccharides. The p180 kit is a widely used targeted 

metabolomics platform that produces highly reproducible 

results.
[9]

 

 

The fully automated assay was based on 

phenylisothiocyanate (PITC) derivatization in the 

presence of internal standards followed by FIA-MS/MS 

(flow injection analysis tandem mass spectrometry) to 

detect acylcarnitines, (lyso-) phosphatidylcholines, 

sphingomyelins, and hexoses. LC-MS/MS (liquid 

chromatography tandem mass spectrometry) was 

performed to detect amino acids and biogenic amines 

using a SCIEX 4000 QTRAP® (SCIEX, Darmstadt, 

G      )      W      X VO™ TQ   (W       V       

Austria) instrument with electrospray ionization (ESI). 

The experimental metabolomic measurement technique 

has been described in detail in patent US 

2007/0004044.
[10]

 

 

        L −  /   q     f                 b      

concentrations were calculated using stable isotope 

dilution and seven-point calibration curves. For the FIA-

MS/MS analysis, the metabolites were quantified using a 

one-point internal standard calibration and were isotope-

corrected. 

 

Statistical Analysis 

Different statistical methods were applied to identify the 

differences in metabolite levels. The analysis included 

data normalization and quality control, principal 

component analysis, hierarchical cluster analysis, 

univariate statistics with significance testing, 

multivariate analysis, and analysis of fold changes. In 

addition, the main biochemical pathways affected were 

analyzed. Figure 1 shows the analysis workflow. 

 

 
Figure 1: Schematic representation of the study outline and data analysis workflow. 
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Data cleaning, imputation, and transformation 

A general cleaning of the dataset was performed to 

exclude analytes whose concentration values were 

missing or below the limit of detection (LOD). The 

cleaned dataset was then further used for scaling, 

transformation, and statistical analysis.
[11]

 The 

concentration values for the whole dataset were cleaned 

and the 80-20 rule was applied. For the statistical 

analysis, the results of the samples had to contain at least 

80%  f         b     ’                b    LOD   f      

criterion was fulfilled, the analyte was submitted for 

further statistical analysis. On the other hand, if 20% of 

the results of an analyte were below the LOD, it was 

excluded. 

 

Missing value imputation is commonly used to replace 

the missing values with a non- zero value while 

maintaining the overall data structure. The remaining 

values below the LOD in the dataset were, therefore, 

imputed by applying a log-spline imputation method, 

which was developed for data being right censored, left 

censored, or interval censored.
[12]

 

 

The study data were further processed by a log2 

transformation. This technique is commonly applied to 

meet assumptions of statistical tests (e.g. data 

distribution, correction of heteroskedasticity, and 

skewness) and improve data interpretability and 

visualization. 

 

Study analyses were performed using the freely available 

XCMS software (version 1.24.1), which runs on the R 

platform. 

 

Univariate statistics 

General measurements of central tendency and 

dispersion were made for the cleaned and imputed 

dataset to provide a quantitative description for the 

different groups. A paired t- test was performed with the 

transformed log concentration values to detect 

     f                                        ’         

 

A      f              f α = 0 05 w             -values 

were calculated. To control the false discovery rate 

(FDR) during multiple comparisons, an adjusted p-value 

(Benjamini- Hochberg correction) was calculated.
[13]

 

Figure 4 shows all analytes with  significantly altered 

concentrations (p < 0.05) and fold changes. 

 

Multivariate statistics 

Multivariate statistical methods were applied to detect 

changes in single metabolites between different groups 

and to show the dependency structures between 

individual analytes. In this case, principal component 

analysis (PCA), partial least squares discrimination 

analysis (PLS-DA), and hierarchical cluster analysis 

(HCA) were used as multivariate approaches. 

Multivariate analysis was performed with cleaned, 

imputed, and log-transformed data. 

 

Hypothesis-free PCA was based on a linear mixture 

model to highlight the variance within the dataset while 

reducing the dimensionality and generating a smaller 

number of mutually decorrelated principal components 

(PCs). As a supervised linear mixture model, PLS 

regression was used to separate the predefined groups to 

the best possible extent based on metabolite 

concentrations. 

 

An HCA was performed to visualize the samples 

according to intrinsic similarities in their measurements 

regardless of specific sample groupings. Here, the 

complete-linkage method was applied, which defines the 

cluster distance between two clusters as the maximum 

distance between their individual components. 

 

RESULTS 
 

The study comprised 39 female and 46 male patients; the 

two groups had a comparable mean age of 72.6 years 

(men) and 69.5 years (women). Figure 2 shows the 

metabolites analyzed for the gender group alone after the 

application of the 80-20 rule. Multivariate statistical 

analyses using PCA showed that the two groups were 

almost completely overlapped with regard to gender, 

while PSL-DA showed partial separation between the 

two groups (Fig. 3). Univariate statistical analyses using 

the t-test with Benjamini-Hochberg adjustment showed 

five metabolites that were significantly different between 

the male and female patients, while the non-adjusted test 

showed 15 significantly different metabolites (Fig. 4). 

Male patients had elevated creatinine and C3 

acylcarnitine, and female patients had increased mean 

levels of three species of sphingomyelin (Fig. 5). 

 

 
Figure 2: Metabolites analyzed after the application 

of the 80-20 rule. 
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Figure 3: Principal component analysis and partial least squares discrimination analysis- multivariate statistical 

analyses by gender. 

 

Figure 4: T-test with and without Benjamini-Hochberg adjustment, showing metabolites in female and male 

patients. 
 

 
 

Figure 5: Significantly changed metabolites with adjustment. 
 

Metabolite 

SM.C22.3 SM.C18.1 

Creatinine SM.C20.2 

C3 

 

Thirty patients had lymph node invasion, while 55 

patients did not. Multivariate analysis using PCA showed 

almost complete overlapping between patients with and 

without lymph node invasion, and PLS-DA showed large 

overlapping between the two groups, with very few 

outliers (Fig. 6). Univariate analyses using the t-test with 

Benjamini-Hochberg adjustment did not demonstrate a 

significant difference in metabolite levels between 

patients with and without lymph node invasion. Without 

adjustment, 13 metabolites were significantly altered: 

SM.C18.0, SM.C16.0, SM.C24.1, SDMA, PC.aa.C32.0, 

SM.C22.3, SM.C20.2, PC.ae.C34.1, SM.OH.C16.1, 

SM.C26.1, PC.aa.C36.1, SM.C18.1, and taurine (Fig. 7). 

All sphingomyelins were significantly altered; 

phosphatidylcholines and SDMA were, on average, 

elevated in patients with lymph node invasion. 
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Figure 6: Principal component analysis and partial least squares discrimination - multivariate statistical 

analyses and lymph node invasion. 

 

Figure 7: Metabolites significantly altered without adjustment and lymph node invasion. 
 

Metabolite p-value 
P-value 

adjusted 

Mean 

No Invasion 

Mean 

Invasion 

Meanlog2 

Fold Change 

SM.C18.8 

SM.C16.0 

SM.C24.1 

SDMA 

PC.aa.C32.0 

SM.C22.3 

SM.C20.2 

0.007 

0.010 

0.015 

0.019 

0.019 

0.021 

0.028 

0.414 

0.414 

0.414 

0.414 

0.414 

0.414 

0.414 

4.84 

6.98 

5.73 

- 0.59 

3.43 

- 4.43 

- 0.79 

5.13 

7.2 

5.94 

- 0.2 

3.67 

- 2.97 

- 0.52 

- 0.08 

- 0.05 

- 0.05 

1.58 

- 0.1 

0.58 

0.59 

PC.ae.C34.1 

SM..0H..C16.1 

SM.C26.1 

PC.aa.C36.1 

SM.C18.1 

Taurine 

0.032 

0.034 

0.035 

0.037 

0.037 

0.038 

0.414 

0.414 

0.414 

0.414 

0.414 

0.414 

2.65 

2.28 

- 1.11 

5.08 

3.73 

5.69 

2.89 

2.5 

- 0.8 

5.32 

3.98 

5.97 

- 0.12 

- 0.14 

0.47 

- 0.07 

- 0.09 

- 0.07 

 

With regard to the relapse variable, 10 patients relapsed 

and 75 did not. Owing to the differences in the sizes of 

the groups, a robust statistical analysis could not be 

performed. In the multivariate analysis, PCA showed 

almost complete overlapping, PSL-DA showed large 

overlapping (70%) between the two groups, and the t-test 

with and without Benjamini- Hochberg adjustment did 

not show significant differences in metabolites between 

the patients with and without relapse (Fig. 8). 

 

 
Figure 8: Schematic representation of relapse between the groups of male and female patients. 

 

Patients lost to follow-up or deceased due to other causes 

were removed from the dataset; hence, the remaining 

group had 18 deceased patients and 61 living patients. 

Multivariate analysis by PCA showed almost complete 
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overlapping between the two groups, and PLS-DA 

showed a group of living patients within the group of 

deceased patients. Owing to the different sizes of the 

groups, a robust statistical analysis could not be 

performed (Fig. 9). In univariate analyses, the t-test with 

Benjamini-Hochberg adjustment did not show a 

significant difference in metabolites between the living 

and deceased patients. Without adjustment, 11 

metabolites were significantly altered: SM.C24.1, 

PC.aa.C32.0, PC.aa.C36.2, SM.C16.0, PC.ae.c44.6, 

PC.ae.C44.5, SM.C18.0, PC.ae.C42.5, SM.C20.2, 

PC.ae.C34.1, and SM.C22.3 (Fig. 10). 

 

 
Figure 9: Schematic representation of survival between male and female patients within the group of deceased 

patients. 

 

Figure 10 T-test without adjustment, showing 11 significantly different metabolites between living and deceased 

patients. 

Metabolite p-value 
P-value 

adjusted 

Mean 

Alive 

Mean 

Deceased 

Meanlog2 

Fold Change 

SM.C24.1 

PC.aa.C32.0 

PC.ae.C44.6 

PC.aa.C36.2 

SM.C16.0 

PC.ae.C44.5 

SM.C18.0 

PC.ae.C42.5 

SM.C20.2 

PC.ae.C34.1 

SM.C22.3 

0.010 

0.016 

0.023 

0.028 

0.029 

0.030 

0.037 

0.042 

0.043 

0.046 

0.048 

0.595 

0.595 

0.595 

0.595 

0.595 

0.595 

0.595 

0.595 

0.595 

0.595 

0.595 

6 

3.74 

0.48 

7.39 

7.23 

0.47 

5.15 

1.23 

- 0.46 

2.91 

- 2.7 

- 1.05 

- 1.09 

- 4.71 

- 1.04 

- 1.03 

- 5.06 

- 1.06 

- 1.23 

1.65 

- 1.1 

1.54 

- 0.07 

- 0.12 

- 2.24 

- 0.06 

- 0.05 

- 2.34 

- 0.08 

- 0.3 

0.72 

- 0.14 

0.63 

 

With regard to TNM staging, the group of 85 patients 

was distributed as follows: 9 patients in T1, 15 patients 

in T2, 50 patients in T3, and 11 patients in T4. 

Multivariate analysis by PCA and PLS-DA showed 

almost complete overlapping between the two groups. 

Owing to the differences in the sizes of the groups, a 

robust statistical analysis could not be performed (Fig. 

11). Univariate analysis using analysis of variance 

(ANOVA) with Benjamini-Hochberg adjustment did not 

show a significant difference in metabolites between the 

different stages. ANOVA without adjustment showed 

significant differences in two metabolites: taurine and 

SM22: 3 (Figure 12). There was high interindividual 

variability in sphingomyelin SM22: 3 among patients in 

the T1, T2, and T4 stages as well as significant 

differences in the gender, relapse, and lymph node 

invasion groups. 

 

Almost no amino acid or biogenic amine was 

significantly altered in the plasma samples. 
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Figure 11: Schematic representation of TNM staging in the groups of male and female patients. 

 

Figure 12: Metabolites SM.C22:3 and taurine with significant changes. SM.C22:3 exhibited a high 

interindividual variability in T1, T2, and T4 patients and was also significantly different in the groups of gender, 

relapse, and lymph node invasion. 
 

Metabolite p-value P-value adjusted Mean T1 Mean T2 Mean T3 Mean t4 

SM.C22.3 

Taurine 

0.016 

0.030 

0.955 

0.955 

- 5.89 

5.97 

- 4.63 

5.57 

- 3.73 

5.73 

- 2.18 

6.2 

 

DISCUSSION 
 

Tissue markers, including genetic markers, allow the 

determination of a different prognosis and a distinct 

therapeutic approach for each case. However, they lack 

the ability of the plasma markers to determine a 

diagnosis or indicate tumor relapse. They are limited to 

determining staging, prognosis, and probable therapeutic 

response to a given lesion.
[14]

 

 

Our findings regarding plasma metabolites are in line 

with those reported by other authors who also showed 

differences in the serum and plasma levels of 

sphingolipids according to gender. Higher levels of C 18 

-SM, C 18: 1-SM, C 18-Cer1P, and total dhCers, 

specifically C 18-, C 22-, and C 24-dhCer, were more 

commonly observed among women than men. The 

higher levels of high density lipoprotein particles 

observed in women may be at least partially responsible 

for the higher levels of sphingolipids in women. 

However, other hormonal and metabolic factors may 

contribute to the differences in sphingolipids between 

male and female patients.
[15,16]

 

 

In several studies, phosphorylation of the myosin light 

chain by serine/threonine protein kinases led to increased 

cellular contractility and consequent blebbing of the 

membrane. This process is apparently associated with the 

regulation of cell morphology, cell migration, and 

neoplastic and lymph node invasion in patients with 

CRC.
[17-19]

 

 

An increase in the mean concentration of 

phosphatidylcholine (PC) was observed in deceased 

patients, and PC.aa.C32:0 was also significantly 

increased in patients with lymph node invasion. All 

sphingomyelins that were significantly increased in 

deceased patients were also elevated in patients with 

lymph node invasion. These data suggest that poor 

survival may be related to the occurrence of lymph node 

invasion. 

 

The results of this investigation and the comparison with 

our previously published findings,
[20]

 in normal and 

tumor tissue samples from the same patients included in 

the present study show that very few metabolites found 

in the plasma were different from those found in tissues. 

The application of more restricted statistics with 

correction to control the false discovery rate (Benjamini-

Hochberg adjustment) most often did not result in 

significant changes in the different groups of patients. 

The analysis of the results without adjustment showed 

significant differences in metabolite levels, especially 

sphingomyelins and phospholipids. 

 

The role of sphingomyelins and lysoPCs as potential 

plasma biomarkers for CRC should be further 

investigated. Although potential interindividual 

differences may occur, additional studies are required to 

confirm our findings. 

 

REFERENCES 
 

1. Weitz J, Koch M, Debus J, Höhler T, Galle PR, 

Büchler MW. Colorectal cancer. Lancet, 2005; 365: 

153–65. 

2. Siegel RL, Miller, KD, Jemal A. Cancer statistics. 

Ca-Cancer J Clin, 2015; 65: 5–29. 

3. Hashim NAA, Ab-Rahim S, Suddin LS, Saman 

MSA, e Mazlan M. Global serum metabolomics 

profiling of colorectal cancer (Review). Mol Clin 

Oncol, 2019; 11: 3-14. 

4. da Silva I, da Costa Vieira R, Stella C, Loturco E, 

Al, C Veo C, et al. Inborn-like errors of metabolism 

are determinants of breast cancer risk, clinical 

response and survival: a study of human biochemical 



Carlos et al.                                                                        World Journal of Pharmaceutical and Medical Research 

www.wjpmr.com        │         Vol 7, Issue 1, 2021.          │         ISO 9001:2015 Certified Journal         │ 

 

195 

individuality. Oncotarget, 2018; 9(60): 31664-81. 

5. Wang D, Li W, Zou Q, Yin L, Du Y, Gu J, Suo J. 

Serum metabolomic profiling of human gastric 

cancer and its relationship with the prognosis. 

Oncotarget, 2017; 8: 110000-15. 

6. Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, 

Sarcar B, Kahali S, Eschrich S, et al.. The 

metabolomic signature of malignant glioma reflects 

accelerated anabolic metabolism. Cancer Res, 2012; 

72: 5878-88. 

7. Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, 

Musharraf SG. Serum metabolomic profiles for 

breast cancer diagnosis, grading and staging by gas 

chromatography-mass spectrometry. Sci Rep, 2017; 

7: 1715. 

8. Kumar N, Shahjaman M, Mollah MNH, Islam SMS, 

Hoque MA. Serum and plasma metabolomic 

biomarkers for lung cancer. Bioinformation, 2017; 

13: 202-8. 

9. Siskos AP, Jain P, Römisch-Margl W, Bennett M, 

Achaintre D, Asad Y, et al. Interlaboratory 

Reproducibility of a Targeted Metabolomics 

Platform for Analysis of Human Serum and Plasma. 

Anal Chem, 2017; 89: 656-65. 

10. Ramsay SL, Stoegg WM, Weinberger KM, Graber 

A, Guggenbichler W. Apparatus and method for 

analyzing a metabolite profile. EP 1875401 A211-

Jan-2007. 

11. Di Guida R, Engel J, Allwood JW, Weber RJM, 

Jones MR, Sommer U, et al. Non- targeted UHPLC-

MS metabolomic data processing methods: a 

comparative investigation of normalisation, missing 

value imputation, transformation and scaling. 

Metabolomics, 2016; 12: 93. 

12. Kooperberg C, Stone CJ. Logspline density 

estimation for censored data. J Comput Graph Stat, 

1992; 1: 301–28. 

13. Benjamini Y, Hochberg Y. Benjamini-1995.pdf. J R 

Stat Soc B, 1995; 57: 289–300. 

14. Fernandes, L C, Matos, D. Tumor markers in 

colorectal cancer. Marcadores Tumorais. 2002; 

29(2): 106-11. 

15. Hammad SM, Pierce JS, Soodavar F, Smith K J, Al 

Gadban MM, Rembiesa B, et al. Blood 

sphingolipidomics in healthy humans: impact of 

sample collection methodology. J Lipid Res, 2010; 

51(10): 3074–87. 

16. Mielke MM, Bandaru VVR, Han D, An Y, Resnick 

SM, Ferrucci L, Haughey NJ. Factors affecting 

longitudinal trajectories of plasma sphingomyelins: 

the Baltimore Longitudinal Study of Aging. Aging 

Cell, 2014; 14(1): 112–21. 

17. Short SP, Thompson JJ, Bilotta AJ, Chen X, Revetta 

FL, Washington MK, et al. Serine threonine kinase 

17A maintains the epithelial state in colorectal 

cancer cells. Mol Cancer Res, 2019; 4: 882–94. 

18. Sanjo H, Kawai T, Akira S. DRAKs, novel 

serine/threonine kinases related to death associated 

protein kinase that trigger apoptosis. J Biol Chem, 

1998; 273(44): 29066–71. 

19. Jin X, Liu K, Jiao B, Wang X, Huang S, Ren W, et 

al. Vincristine promotes migration and invasion of 

colorectal cancer HCT116 cells through 

RhoA/ROCK/Myosin light chain pathway. Cell Mol 

Biol (Noisy-le-grand), 2016; 62(12): 91–6. 

20. Denadai, MV, Veo, CAR, Silva, SM, Adan, MG, 

Muller, U, Schafferer, S, Silva, IDCG, Brunetti, IA, 

Matos, D. Significant metabolomic differences 

between the tumor and non-tumor adjacent mucosa 

in colorectal cancer – a targeted mass-spectrometry-

based study to identify potential biomarkers. World 

J Pharm Med Res, 2020; 6: 7. 


