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INTRODUCTION 

Antihistamines that act on the histamine H₁ receptor 

remain indispensable for managing allergic conditions 

such as rhinitis, urticaria, and conjunctivitis. First-

generation H₁ antagonists exhibit potent therapeutic 

effects but readily cross the blood–brain barrier, 

producing sedation and psychomotor impairment that 

limit their clinical utility.
[1,2]

 Although second- and third-

generation compounds demonstrate improved receptor 

selectivity and reduced central nervous system 

penetration, challenges such as variable bioavailability, 

metabolic instability, and hERG channel inhibition 

continue to restrict optimal therapy. 

 

Histamine receptors (H₁–H₄) mediate a wide range of 

physiological and pathological responses. Among them, 

H₁ receptors are expressed in smooth muscle, 

endothelial, and immune cells, and are chiefly 

responsible for vasodilation, bronchoconstriction, and 

pruritus observed in hypersensitivity reactions.
[8,9]

 

Therefore, rational modulation of H₁ receptor activity 

remains a key strategy for developing safer, non-sedative 

antihistamines. 

 

In modern drug design, a compound’s pharmacodynamic 

potency must be balanced with its pharmacokinetic and 

toxicological profile. The ADMET principle—

Absorption, Distribution, Metabolism, Excretion, and 

Toxicity—governs the in-vivo fate of a drug and strongly 

influences its success in clinical development.
[10–13]

 Poor 

ADMET properties account for a large proportion of 

late-stage drug failures, highlighting the need for early 

screening during discovery.
[6,7]

 Coupling ADMET 

assessment with drug metabolism and pharmacokinetics 

(DMPK) evaluation provides a comprehensive 

understanding of bioavailability, metabolic stability, and 

systemic safety. 
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ABSTRACT 

Antihistaminic agents remain essential in the management of allergic, gastric and neurologic disorders, yet many 

candidates fail during development because of poor absorption, metabolic instability or unexpected toxicity. Early 

evaluation of absorption, distribution, metabolism, excretion and toxicity (ADMET) is therefore a critical step in 

optimising safety and efficacy. Computational approaches provide rapid, cost-effective screening by predicting 

pharmacokinetic and toxicological behaviour from chemical structure. This article presents an overview of in-silico 

ADMET profiling applied to commonly used antihistamines across the H1–H4 receptor spectrum. Molecular 

descriptors were retrieved from freely available databases and assessed using web-based platforms such as 

SwissADME, pkCSM and admetSAR. Predicted properties—including lipophilicity, polar surface area, intestinal 

permeability, blood–brain barrier transport, cytochrome P450 interactions, clearance and potential cardiotoxicity—

were compared with information reported in clinical literature. Second-generation H1 antagonists demonstrated 

favourable oral absorption with minimal central penetration, whereas several first-generation agents showed higher 

lipophilicity and a risk for hERG channel blockade, consistent with their sedative and cardiac profiles. The study 

highlights how software-assisted prediction can complement experimental data, support rational drug design and 

guide safer selection of antihistaminic candidates for further development. 
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Computational and in-silico methods now offer rapid, 

cost-effective means to predict ADMET behavior before 

synthesis or biological testing. Platforms such as 

SwissADME
[3]

, ADMETlab 3.0
[4]

, and admetSAR 3.0
[5]

 

allow systematic evaluation of key pharmacokinetic 

parameters, including gastrointestinal absorption, blood–

brain barrier permeability, CYP450 inhibition, and 

cardiotoxicity risk, thus reducing experimental attrition. 

 

The objective of this review is to critically summarize 

and compare computational approaches employed for 

ADMET profiling of H₁-antihistaminic compounds. By 

integrating predictive outcomes with available 

experimental data, this work aims to support the rational 

design of next-generation antihistamines exhibiting 

enhanced pharmacokinetic performance, minimal central 

nervous effects, and improved overall safety. 

 

MATERIAL AND METHODOLOGY 

Selection of Drug Candidates: Candidate molecules for 

this study were selected from previously reported H₁ 
receptor antagonists

[5,6,7]
 and publicly accessible 

chemical databases, including PubChem and DrugBank. 

 

Table 1: The selected Drug compounds for this study. 

DRUG 

NAME 
IUPAC NAME 

CHEMICAL 

FORMULA 
M.W. STRUCTURE 

Cetrizine 

(±)-[2-[4-[(4-

Chlorophenyl)phenylmethy

l]-1-

piperazinyl]ethoxy]acetic 

acid 

C21H25ClN2O3 
388.89 g·m

ol
−1

 

 

Loratadine 

Ethyl 4-(8-chloro-5,6-

dihydro-11H-

benzo[5,6]cyclohepta[1,2-

b]pyridin-11-ylidene)-1-

piperidinecarboxylate 

C22H23ClN2O2 
382.89 g·m

ol
−1

 

 

Fexofenadine 

(±)-4-[1-Hydroxy-4-[4-

(hydroxydiphenylmethyl)-

1-piperidinyl]-butyl]-α, α-

dimethyl benzeneacetic 

acid 

C32H39NO4 
501.667 

g·mol−1 

 

Ebastine 

4-(4-benzhydryloxy-1-

piperidyl)-1-(4-tert-

butylphenyl)butan-1-one 

C32H39NO2 
469.669 

g·mol−1 

 

Rupatadine 

8-Chloro-6,11-dihydro-11-

[1-[(5-methyl-3-

pyridinyl)methyl]-4-

piperidinylidene]-5H-

benzo[5,6]cyclohepta[1,2-

b]pyridine fumarate 

C26H26ClN3 
415.97 

g·mol−1 

 

Bilastine 

2-[4-(2-{4-[1-(2-

Ethoxyethyl)-1H-

benzimidazol-2-yl]-1-

piperidinyl}ethyl)phenyl]-

2-methylpropanoic acid 

C28H37N3O3 
463.622 

g·mol−1 

 

Azelastine 

(RS)-4-[(4-

Chlorophenyl)methyl]-2-

(1-methylazepan-4-yl)-

phthalazin-1-one 

C22H24ClN3O 
381.90 

g·mol−1 
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Chemical structures of the selected compounds were 

retrieved in SDF or MOL format for computational 

analysis. 

 

The H₁ receptor, along with other histamine receptor 

subtypes, plays a central role in mediating allergic 

responses through interactions with smooth muscle, 

endothelial, and immune cells.
[1,2]

 The biological and 

systemic distribution of histamine receptors guided the 

selection of candidate molecules by highlighting 

pharmacologically relevant targets. A comprehensive 

overview of histamine receptor subtypes and their major 

physiological effects is presented in Table 1. 

 

Table 2: Cellular and systemic distribution of histamine receptor subtypes and their major physiological effects. 

Histamine 

Receptor 
Location by cells 

Systemic 

Location 
Major Effects 

H1 

Smooth muscles, 

Endothelial cells, 

Epithelial cells, 

Neutrophils, Eosinophil, 

Monocytes, Macrophage, 

T and B cells 

Exocrine 

Respiratory 

Intestinal 

Skin 

Neuromuscular 

Cardiovascular 

Increase mucus secretions 

Bronchiolar constriction decrease lung capacity 

Intestinal cramps Diarrhea 

Triple responce 

Itch and pain 

Positive Chronotropic , Ionotropism 

H2 
Parietal cells 

Smooth cells 

Stomach 

Cardiovascular 

Increased acid secretion 

Positive Chronotopic 

H3 Histaminergic neurons CNS Congnitive effects pain, sleep 

H4 
Mast cells, Eosinophil, T 

and Dendritic cells 
Immune system Immune response 

 

ADMET TOOLS 

1] SwissADME 
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SwissADME is a free, web-based platform developed by 

the Swiss Institute of Bioinformatics that predicts 

pharmacokinetic, drug-likeness, and medicinal chemistry 

properties of small molecules.
[51] 

It is widely used to 

screen and profile compounds during the early stages of 

drug discovery, helping to reduce attrition by 

highlighting ADMET issues before synthesis.
[51,52]

 

 

Historical background of swissADME 

The development of SwissADME was initiated by the 

Swiss Institute of Bioinformatics (SIB) to provide an 

accessible, free platform for computational prediction of 

physicochemical, pharmacokinetic, and drug-likeness 

properties of small molecules.
[51]

 It was officially 

released in 2017 as an open-access web server, 

integrating several models previously published by its 

creators, such as the BOILED-Egg (for intestinal 

absorption and BBB penetration) and the Bioavailability 

Radar (for oral drug-likeness).
[51,52]

 SwissADME was 

designed to address a major bottleneck in drug 

discovery: the high attrition rate due to poor absorption, 

distribution, metabolism, excretion, and toxicity 

(ADMET) profiles. By providing rapid, user-friendly 

predictions, it has enabled researchers worldwide to 

assess pharmacokinetics and medicinal chemistry 

properties before investing in costly experimental 

work.
[51,54]

 Since its launch, SwissADME has been 

integrated into academic research, pharmaceutical 

pipelines, and teaching, gaining widespread citation in 

medicinal chemistry and computational drug design 

studies.
[54]

 Its success led to complementary tools (e.g., 

SwissSidechain, SwissTargetPrediction) being developed 

by the same group, expanding the SIB 

―SwissDrugDesign‖ platform.
[51,54]

 

 

Key Features 

• Physicochemical properties – molecular weight, 

topological polar surface area (TPSA), rotatable 

bonds, saturation, flexibility.
[51]

 

• Lipophilicity – multiple algorithms (XLOGP3, 

WLOGP, MLOGP, SILICOS-IT) and iLOGP, with 

a consensus logP for robustness.
[51]

 

• Solubility – qualitative and quantitative water 

solubility prediction (log S).
[51]

 

• Pharmacokinetics – BOILED-Egg model predicts 

human intestinal absorption (HIA) and blood–brain 

barrier (BBB) permeation; identifies P-glycoprotein 

substrates; predicts CYP450 inhibition.
[51,53]

 

• Drug-likeness – integrates Lipinski, Ghose, Veber, 

Egan, and Muegge filters, with alerts for 

problematic fragments.
[51]

 

• Medicinal chemistry filters – structural alerts and 

synthetic accessibility (SA) score.
[51]

 

• Graphical outputs – Bioavailability Radar and 

BOILED-Egg plots give a clear visualization of 

absorption, lipophilicity, and BBB potential.
[51]

 

 

Strengths 

• Combines multiple prediction models for 

reliability.
[51]
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• Fast batch processing and user-friendly interface.
[51]

 

• Graphical outputs facilitate understanding even for 

non-experts.
[52]

 

 

Limitations 

• Models approximate reality; quantitative data may 

be lacking for some endpoints.
[51,53]

 

• BOILED-Egg only accounts for passive diffusion, 

not active transport.
[51]

 

• Predictions may be less accurate for molecules far 

outside the training set.
[51]

 

 

2] pkCSM 

pkCSM was introduced in 2015 by researchers at the 

University of Queensland using graph-based signatures 

to predict ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) properties of small 

molecules.[65]
 Since then,  it has undergone updates to 

improve predictive accuracy, incorporate more 

experimental data, and refine algorithms for better 

reliability in in silico ADMET profiling.
[66] 

 

Architecture & Features 

Graph-based signatures: Molecules are represented as 

graphs (atoms = nodes, bonds = edges) to capture 

structural information relevant to ADMET properties.
[65] 

 

Endpoints covered: Absorption (Caco-2 permeability), 

Distribution (BBB penetration), Metabolism (CYP450 

inhibition), Excretion (renal clearance), Toxicity 

(mutagenicity, hepatotoxicity, cardiotoxicity).
[65] 

 

Interface 

Web-based platform, accepts SMILES input, supports 

batch predictions, user-friendly for researchers without 

computational expertise.
[66] 

 

Applications 

• Early-stage drug discovery for pharmacokinetic and 

toxicity profiling.
[65]

 

• Chemical risk assessment for pesticides, food 

additives, and other chemicals.
[65]

 

• Regulatory compliance support via in silico 

predictions.
[65]

 

 

Strengths 
• Comprehensive coverage of ADMET endpoints.

[65]
 

• Graph-based modeling captures complex molecular 

features for improved predictions.
[65]

 

• Freely accessible web server for global research 

use.
[66]

 

 

Limitations 

• Accuracy depends on chemical similarity to training 

data.
[65]

 

• Some endpoints may have lower reliability if 

experimental data is sparse.
[65]

 

 

 

 

3] ADMETLab 3.0 

ADMETlab was first introduced in 2018 as a web-based 

platform for systematic ADMET evaluation built from a 

comprehensively collected dataset.
[55]

 In 2024 the 

platform was substantially updated and released as 

ADMETlab 3.0, expanding endpoint coverage, enlarging 

datasets, improving model performance, and adding API 

access and uncertainty estimation.
[56]

 

 

Data & Model Architecture 

The ADMETlab 3.0 database aggregates hundreds of 

thousands of molecules from public sources (e.g., 

ChEMBL, PubChem) and literature; data preprocessing 

includes standardizing SMILES and removing mixtures 

prior to modelling.
[56]

 Models are implemented using a 

multi-task Directed Message Passing Neural Network 

(DMPNN) combined with molecular descriptors 

(DMPNN-Des) to improve predictive accuracy and 

generalizability.
[56]

 

 

Endpoint Coverage 

ADMETlab 3.0 provides prediction for 119 endpoints 

across physicochemical, absorption, distribution, 

metabolism, excretion and toxicity categories. Newly 

added endpoints include pKa, melting/boiling point 

predictions, PAMPA permeability, transporter-related 

endpoints, and several organ-specific toxicity 

subendpoints.
[56]

 

 

Model Validation & Performance 

The platform implements both regression and 

classification models (many endpoints show strong 

performance metrics). Validation reported in the 

ADMETlab 3.0 publication indicates robust R² and AUC 

values for most endpoints, and the authors provide 

applicability/uncertainty estimates to help interpret 

model confidence.
[56]

 

 

User Interface & API 

ADMETlab 3.0 is accessible via a web interface that 

accepts SMILES input or batch uploads and returns 

tabular and graphical results. An API enables 

programmatic submission and retrieval of predictions, 

which facilitates batch screening and integration into 

workflows.
[56]

  

 

Strengths 

 Very broad endpoint coverage (119 endpoints) 

enabling comprehensive early-stage profiling.
[56]

 

 Modern deep-learning architecture (DMPNN + 

descriptors) trained on large, diverse datasets.
[56]

 

 Uncertainty estimates and API support increase 

practical usability for medicinal chemists.
[56]

 

 

Limitations & Considerations:  As with all in-silico 

platforms, predictions are approximate and may be less 

reliable for chemical scaffolds outside the training 

domain; users should consult the provided 

uncertainty/applicability warnings.
[56]

 The breadth of 



Vitthal et al.                                                                          World Journal of Pharmaceutical and Medical Research 

www.wjpmr.com       │      Vol 11, Issue 11, 2025.      │        ISO 9001:2015 Certified Journal        │ 

 

350 

endpoints increases computational cost for very large 

batch jobs compared with lighter tools.
[56] 

 

4] preADMET 

PreADMET is a web-based application developed by the 

Bioinformatics & Molecular Design Research Center 

(BMDRC), Yonsei University, South Korea. It was first 

released in the early 2000s, with PC-version 1.0 coming 

out circa 2004, and later upgraded to PreADMET 2.0 

with more functionalities.
[57]

 The motivation was to 

provide a rapid computational prediction platform for 

ADME and toxicity (ADMET) properties during early 

stages of drug discovery, to reduce cost/time before 

experimental evaluation.
[58]

 

 

Architecture & Core Modules 

PreADMET consists of several main components.
[59,60]

 

1. Molecular Descriptor Calculation: Using the 

―TOPOMOL‖ module, PreADMET can compute 

>2,500 molecular descriptors (constitutional, 

topological, electrostatic, geometrical etc.) from 

2D/3D chemical structures.
[59]

 

2. Drug-likeness Prediction: Implements rule-based 

filters including Lipinski’s ―rule of five‖, lead-

likeness, and other drug-like rules derived from 

databases like WDI, CMC, MDDR.
[59]

 

3. ADME Prediction: Includes models for in vitro cell-

based assays (Caco-2, MDCK), human intestinal 

absorption (HIA), skin permeability, blood–brain 

barrier (BBB) penetration, plasma protein binding. 

Also includes genetic algorithm / neural network 

(Rprop) to select relevant descriptors and develop 

nonlinear models.
[59]

 

4. Toxicity Prediction: Predicts mutagenicity via Ames 

test (various strains), rodent carcinogenicity 

(mouse/rat 2-year assays), etc.
[59]

 

 

Input / Output Options 

• Accepts chemical structures via SMILES, Mol / 

SDF files.
[59]

 

• Outputs include predicted numerical values (e.g. % 

HIA, permeability rates, binding %, logP etc.), 

classification (yes/no) for toxicity endpoints.
[61]

 

• Interface is web-based; some versions allow batch 

upload.
[59]

 

 

Strengths 

• Broad set of molecular descriptors, which supports 

better selection of features for QSAR / ADME 

modelling.
[59]

 

• Provides both absorption / distribution endpoints and 

toxicity predictions, which helps in early filtering of 

compounds.
[60]

 

• Useful for academic users as it is (at least partly) 

freely accessible.
[59]

 

Limitations: 

• Some descriptor calculations are computationally 

heavy when dealing with large batches; might be 

slower than more streamlined tools.
[59]

 

• Model reliability depends on chemical similarity to 

training data. For molecules structurally very 

different, prediction confidence may be lower.
[59]

 
• Toxicity predictions are mostly classification; 

quantitative toxicity metrics or organ-specific 

toxicity may be limited.
[60] 

 

5] admetSAR 3.0 

admetSAR was first introduced in 2012 as a web-based 

tool for predicting ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) properties of 

chemicals.
[62]

 admetSAR 2.0 (2019) expanded the 

database and improved model accuracy with more data 

and refined algorithms.
[63]

 admetSAR 3.0 (2023) further 

enhanced the platform with a broader range of endpoints, 

modern deep learning models, improved user interface, 

and molecular optimization features.
[64]

 

 

Architecture & Features 

• Database: >370,000 experimentally collected 

ADMET data for >100,000 unique compounds.
[64]

 

• Models: Multi-task graph neural network framework 

(CLMGraph) combining contrastive learning and 

multi-task learning for accurate ADMET 

predictions.
[64]

 

• Endpoint coverage: 119 endpoints including 

physicochemical, ADME, toxicity, environmental, 

and cosmetic properties.
[64]

 

• Molecular optimization: Provides transformation 

rule-based and scaffold-hopping strategies to 

improve predicted ADMET profiles.
[64]

 

• Interface: Web-based platform supporting SMILES 

input, structure drawing, and batch predictions.
[64]

 

 

Applications 

• Early-stage drug discovery for candidate 

screening.
[64]

 

• Chemical risk assessment (pesticides, food 

additives, cosmetics).
[64]

 

• Regulatory compliance support via in silico 

predictions.
[64]

 

 

Strengths 

• Broad endpoint coverage and large dataset support 

generalizability.
[64]

 

• Modern deep learning improves predictive 

performance.
[64]

 

• User-friendly interface and batch processing 

capabilities.
[64]

 

 

Limitations: GI absorption  Prediction ability of a 

compound to be absorbed in the gastrointestinal 

tractEnsures adequate bioavailability for orally 

administered drugPredictions are less reliable for 

molecules outside the training chemical space.
[64] 

Batch 

predictions may take longer due to the complexity of 

multi-task models.
[64]
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Table 3: Common ADMET endpoints and their significance. 

Blood-Brain 

Barrier[BBB]permeability 

Measure likelihood ofcrossing the 

BBB importance for cns drugs 

Low bbb penetration desired for 

non-sedative antihistamines 

 

This review collates and analyses published work on the 

use of computational approaches for ADMET profiling 

of antihistaminic drugs. By summarising predictive 

outcomes and highlighting gaps between theoretical and 

experimental data, it aims to support the rational Tabl2. 

Common ADMET endpoints used in in silico profiling 

and their significance in drug discovery. design of next-

generation, non-sedative H₁ receptor antagonists with 

improved safety and pharmacokinetic performance. 

 

Data Compilation and Comparative Analysis 

Table 4: Predicted Physicochemical and Pharmacokinetic Properties of Selected H₁ Antihistamines 

(SwissADME). 

Drug Name 
GI 

Absorption 

BBB 

Permability 
Log P 

TPSA 

(Å²) 

No. Of H-

Bond 

Acceptors 

No. Of 

H-Bond 

Donors 

No. Of 

Rotatable 

Bonds 

Bioavailability 

Score 

Cetrazine High Yes 2.56 53.01 5 1 8 0.55 

Loratadine High Yes 5.03 47.24 3 0 6 0.55 

Fexofenadine High No 4.15 93.77 6 1 11 0.55 

Ebastine High Yes 4.18 32.78 3 0 8 0.55 

Rupatadine High Yes 4.20 23.55 2 0 5 0.55 

Bilastine High Yes 3.88 44.81 3 1 10 0.55 

Azelastine High Yes 3.08 6.48 0 1 1 0.55 

 

A)FUTURE OF IN SILICO ADMET PREDICTION 

STUDIES 

The field of in silico ADMET prediction is rapidly 

evolving, driven by advances in computational power, 

machine learning, and availability of large experimental 

datasets. The future of this domain focuses on improving 

accuracy, reliability, and integration with other drug 

discovery pipelines. 

1. Integration with AI and Deep Learning:  2. High-

Throughput Screening and Automation:3. Multi-Target 

and Polypharmacology Consideration: 4. Personalized 

and Precision Medicine Applications: 5. Regulatory 

Acceptance and Standardization. 

 

B) LIMITATIONS OF CURRENT IN SILICO 

ADMET STUDY 
While in silico ADMET prediction tools have 

revolutionized early-stage drug discovery, there are 

several limitations that researchers should consider. 

1. Accuracy Depends on Training Data. 

2. Predictions are heavily dependent on the chemical 

space of the training datasets. Unusual scaffolds or 

novel compounds may yield less reliable 

results.
[70,71]

 

3. Incomplete Endpoint Coverage. 

4. Not all tools predict every ADMET endpoint.
[71,72]

 

5. Lack of Integration with Experimental Data. 

6. In silico predictions often need validation through in 

vitro or in vivo experiments. Discrepancies between 

predicted and experimental results can occur due to 

biological complexity.
[70,72]

 

7. Limited Multi-Target / Polypharmacology Analysis. 

8. Most ADMET tools evaluate a compound in 

isolation and do not account for drug-drug 

interactions or systemic biological effects.
[71]

 

 

Despite these limitations, in silico ADMET prediction 

remains a valuable tool in early drug discovery, helping 

reduce cost, time, and attrition rates when combined with 

experimental validation. 

 

CONCLUSION 

In silico ADMET prediction has become an 

indispensable step in modern drug discovery, providing 

early insight into pharmacokinetic and toxicity profiles 

before resource-intensive laboratory testing. For second-

generation antihistamines such as cetirizine, loratadine, 

fexofenadine, ebastine, rupatadine, bilastine, and 

azelastine, platforms including SwissADME
[74]

, 

pkCSM
[73]

, ADMETlab 3.0
[76]

, admetSAR 3.0
[75]

, and 

preADMET
[77]

 enable rapid evaluation of absorption, 

distribution, metabolism, excretion, and toxicity 

(ADMET) endpoints. 

 

These computational methods reduce the cost and time 

of screening and allow prioritization of drug candidates. 

However, they face limitations such as incomplete 

endpoint coverage, dependency on the quality of training 

datasets, and lower predictive accuracy for novel or 

complex chemical scaffolds.
[73,74,75,76,77] 

 

Looking forward, advances in machine learning, 

integration of multi-omics data, and stronger validation 

standards will enhance predictive accuracy and promote 

regulatory acceptance.
[73,74,75,76,77]

 When combined with 

experimental studies, in silico tools — including 

preADMET — represent a powerful strategy for the 

rational design and optimization of next-generation 

antihistamines. 
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