

WORLD JOURNAL OF PHARMACEUTICAL AND MEDICAL RESEARCH

www.wjpmr.com

Impact Factor: 6.842

ISSN (O): 2455-3301 ISSN (P): 3051-2557

Coden USA: WJPMBB

ROLE OF PHARMACOVIGILANCE IN DRUG SAFETY MONITORING

Jeel Mevada*¹, Kashish Patel², Mr. Amar Raval³

^{1,2}Pharm D 3rd Year, ³Associate Professor

Sharda School of Pharmacy, Pethapur, Gandhinagar, Gujarat – 382610, Gujarat Technological University, Ahmedabad.

*Corresponding Author: Jeel Mevada

Pharm D 3rd Year, Sharda School of Pharmacy, Pethapur, Gandhinagar, Gujarat – 382610, Gujarat Technological University, Ahmedabad. https://doi.org/10.5281/zenodo.17482904

How to cite this Article: Jeel Mevada*1, Kashish Patel2, Mr. Amar Raval3 (2025). Role Of Pharmacovigilance In Drug Safety Monitoring. World Journal of Pharmaceutical and Medical Research, 11(11), 235–240.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 22/09/2025

Article Revised on 12/10/2025

Article Published on 01/11/2025

ABSTRACT

In order to guarantee patient safety and medication efficacy, pharmacovigilance—which is the science and collection of practices pertaining to the identification, evaluation, comprehension, and prevention of adverse drug reactions (ADRs) and other drug-related issues—is essential. Even though ADRs are the foundation of post-marketing safety surveillance, underreporting of these events continues to be a major national and international problem, resulting in substantial ethical, financial, and health costs, Pharmacovigilance, the science of monitoring, detecting, assessing, and preventing adverse effects and other drug-related problems, is fundamental to ensuring medication safety throughout their lifecycle. This review explores the essential role of robust data collection systems, including integration of electronic health records, wearable devices, and real-world evidence, to enhance analysis and signal detection. Emerging technologies such as artificial intelligence and machine learning are transforming pharmacovigilance by automating the identification of safety concerns and supporting regulatory decision-making. The article further examines the importance of coordinated information sharing among regulatory agencies, pharmaceutical companies, and healthcare providers to enable timely, proactive risk management. Ultimately, effective pharmacovigilance safeguards public health by promoting rational drug use and continued evaluation of data management strategies in the evolving landscape of modern healthcare and pharmaceutical innovation.

KEYWORDS: Pharmacovigilance, Adverse Drug Reaction, Drug Safety, Healthcare Professionals, Patient Safety, ADR Reporting.

1. INTRODUCTION

Pharmacovigilance plays a vital role in ensuring the safety and effectiveness of medicines throughout their lifecycle. It is the scientific process of detecting, assessing, understanding, and preventing adverse drug reactions (ADRs) or any other drug-related problems. While clinical trials provide valuable information on a drug's efficacy and short-term safety, they often involve a limited number of patients under controlled conditions. Once a drug is introduced to the wider population, new or rare side effects may emerge. Pharmacovigilance helps identify these unforeseen risks through continuous post-marketing surveillance and spontaneous reporting systems. This real-world data is then analyzed to update safety guidelines, modify dosages, or even withdraw if necessary. unsafe products Moreover, pharmacovigilance enhances patient confidence by ensuring that medicines remain both effective and safe

over time. It also assists regulatory authorities, healthcare professionals, and pharmaceutical companies in making informed decisions that ultimately protect public health. In today's world of rapid drug innovation, pharmacovigilance stands as the backbone of drug safety monitoring, bridging the gap between discovery and patient well-being. [1]

1.1 Informative & Professional

In today's rapidly evolving pharmaceutical world, ensuring the safety of medicines after they reach the market is more critical than ever. Pharmacovigilance the science of detecting, assessing, and preventing adverse effects or any other drug-related problems plays a central role in protecting public health. Through continuous monitoring and reporting systems, pharmacovigilance bridges the gap between clinical trials and real-world

drug use, ensuring that every dose delivered is as safe as possible. [2]

1.2 Impactful & Thought-Provoking

Every year, thousands of patients experience side effects that were never observed during clinical trials. What happens next determines not only the future of that medicine but also the trust between patients and the healthcare system. This is where pharmacovigilance steps in a silent yet powerful guardian of drug safety. It acts as the global watchtower that identifies, analyzes, and responds to potential risks, ensuring that the benefits of a drug always outweigh its harms. [3]

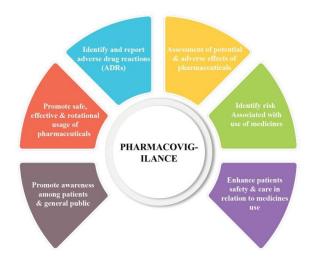
1.3 Academic & Insightful

Pharmacovigilance has emerged as a cornerstone of modern healthcare, transforming how we understand and manage drug safety. Beyond merely recording adverse events, it integrates scientific analysis, data interpretation, and global collaboration to safeguard patients. As the pharmaceutical industry introduces innovative therapies and complex biologics, the role of pharmacovigilance has expanded — evolving from a regulatory requirement to a proactive system for continuous safety monitoring. [4]

1.4 Engaging & Human-Centered

Behind every prescription lies a story — one of hope, healing, and sometimes, unforeseen risks. Pharmacovigilance ensures that these stories lead to safer outcomes. By constantly monitoring and analyzing the effects of medicines after their approval, it provides an essential feedback loop that protects millions of lives worldwide. In essence, pharmacovigilance transforms data into decisions and vigilance into safety. [5]

1.5 Monitoring Adverse Effects


Ensures early detection of any harmful side effects of medications and effectively communicates these risks to the public.

1.6 Protecting Public Health

Evaluates the risk-to-benefit ratio of medicines to guarantee that only safe and effective drugs are prescribe.

1.7 Preventing Drug-Related Harm

Identifies, assesses, and minimizes adverse drug reactions (ADRs) and medication errors to enhance patient safety.

2. OBJECTIVES^[6]

2.1 Monitoring Adverse Effects

➤ To continuously track, detect, and evaluate any unwanted or unexpected drug reactions that occur during real-world use of medications.

2.2 Assessing Risks and Benefits

To carefully balance the therapeutic advantages of a drug against its potential risks, ensuring that patients receive maximum benefit with minimal harm.

2.3 Data Collection and Analysis

➤ To systematically gather safety data from healthcare professionals, patients, and clinical trials, and analyze this information to identify patterns and potential concerns.

2.4 Risk Management and Mitigation

➤ To design and implement strategies that minimize medication-related risks—this may include revising drug labels, safety alerts, or even withdrawing unsafe products from initiating the market.

2.5 Promoting Safe Medication Practices

To spread awareness and educate healthcare workers and patients about the correct use of medicines, focusing on proper dosage, administration, and regular monitoring.

2.6 Effective Communication and Information Sharing

To ensure timely and transparent communication of safety updates to healthcare professionals, regulatory bodies, and the general public, empowering informed decisions about drug use.

2.7 Regulatory Compliance

➤ To maintain strict adherence to national and international guidelines related to drug safety monitoring and reporting standards.

2.8 Post-Marketing Surveillance

➤ To observe and evaluate drug safety after market approval, identifying rare or long-term side effects that may not surface during clinical trials. This also

involves promoting education, training, and clear communication about drug safety, making complex information understandable for everyone from healthcare professionals to the general public.

Table 1: ADR monitoring centre. [7]

ADR MONITORING CENTRE	STATE
Department of Pharmacology, All India Institute of Medical Science	New Delhi
Department of Pharmacology, PGIMER	Chandigarh
Department of Pharmacology, R.G.Kar Medical College	Kolkata
Department of Clinical Pharmacology, Lady Hardinge Medical College	Kolkata
Institute of Pharmacology, Madras Medical College	Chennai
Department of Pharmacology, SAIMS Medical College	Indore

3. The Role of Pharmacovigilance in India: A Modern Perspective

Pharmacovigilance (PV) is the backbone of drug safety it's how we make sure that the medicines meant to heal don't harm. It encompasses everything from detecting and understanding adverse drug reactions (ADRs) to preventing them. In today's fast-evolving world of pharmaceuticals and biotechnology, where new medicines are designed to cure, prevent, or manage disease, PV ensures that every step—from molecule to marketplace is monitored with care. [8]

3.1 Clinical Trials in India^[9]

Strengths and Challenges India has emerged as a global hub for clinical research thanks to its large population, skilled professionals, compliance with international guidelines (ICH-GCP, USFDA standards), and cost advantages. However, despite this potential, challenges remain—underreporting of ADRs, limited awareness, and gaps in healthcare funding are key barriers. A quick look at India's position reveals.

Strengths: Large, diverse population; expanding biotech industry; high innovation potential.

Weaknesses: Limited health expenditure and low ADR reporting.

Opportunities: Genetic diversity offers unique insights for personalized medicine.

Threats: Risk of data quality issues and insufficient monitoring centers.

3.2 Key Regulatory Bodies

India's clinical research and PV systems operate under several key agencies.

- DCGI (Drug Controller General of India) Implements the National Pharmacovigilance Program.
- CDSCO (Central Drugs Standard Control Organization) Supervises drug safety and reporting systems.
- ICMR (Indian Council of Medical Research) –
 Defines ethical standards for biomedical research.
- **DBT, MOEF, MHFW, NPAC** Provide infrastructure, environmental assessment, and data analysis support.
- This multi-agency setup ensures shared accountability among regulators, researchers, and healthcare providers.

4. History of Pharmacovigilance in India

Pharmacovigilance in India began in 1986 with the establishment of a formal Adverse Drug Reaction (ADR) monitoring system comprising 12 regional centers, each responsible for a population of approximately 50 million. However, the initiative showed limited progress. In 1997, India joined the World Health Organization's (WHO) International Drug Monitoring Programme based in Uppsala, Sweden, but this effort was unsuccessful. Consequently, in 2005, with support from the WHO and funding from the World Bank, the National Pharmacovigilance Programme (NPPV) of India was launched and made operational. [10]

Table 2: ADR timeline.[11-15]

YEAR	EVENT
1747	The first documented clinical trial by James Lind demonstrated that lemon juice was effective in
	preventing scurvy.
1937	The deaths of 107 children occurred as a result of sulfanilamide poisoning.
1950	Cases of aplastic anemia were reported as an adverse effect of chloramphenicol use.
1961	A worldwide tragedy occurred as a result of thalidomide-induced toxicity.
1963	The 16th World Health Assembly acknowledged the importance of taking prompt action on adverse
	drug reactions (ADRs).
1968	WHO pilot research project for international drug monitoring
1996	India began conducting clinical trials following global standards and joined the WHO Adverse
	Drug Reaction (ADR) Monitoring Programme.
1998	Pharmacovigilance activities were initiated in India.

2002	Pharmacovigilance activities were initiated in India.
	The 67th National Pharmacovigilance Centre was established in India.
2004	The National Pharmacovigilance Programme was launched in India.
2005	Structured clinical trials began to be conducted in India.
2009-10	PVPI Initiated

5. Scope of pharmacovigilance^[12-16]

Regulatory authorities: Government agencies, like the FDA (Food and Drug Administration) or CDSCO (Central Drugs Standard Control Organization), depend heavily on pharmacovigilance data to approve and monitor drugs.

Pharmaceutical companies: Pharmaceutical companies rely on pharmacovigilance for safety monitoring and to improve drug formulations.

Healthcare providers: Doctors and pharmacists use pharmacovigilance data to assess drug safety and provide better care to patients.

Patients: Patients benefit from pharmacovigilance through early identification of drug-related risks, ensuring better treatment outcomes.

6. Detention and reporting of $ADR^{[17-20]}$

6.1 Where to report

"ADRs can be reported to the National Coordinating Centre (NCC) or Adverse Drug Reaction Monitoring Centres (AMCs) by all healthcare professionals—including clinicians, dentists, pharmacists, and nurses—as well as by patients or consumers. Additionally, pharmaceutical companies can submit individual case safety reports (ICSRs) related to their products directly to the NCC."[21]

6.2 How to Report

Suspected ADR reporting forms for both healthcare professionals and consumers are accessible on the IPC website for submitting ADR reports. To overcome language barriers, the consumer reporting forms are available in 10 regional languages: Hindi, Tamil, Telugu, Kannada, Bengali, Gujarati, Assamese, Marathi, Oriya, and Malayalam. ADRs can also be reported through the PvPI helpline at 18001803024, available on weekdays from 9:00 am to 5:30 pm. Additionally, an Android mobile application has been developed to facilitate ADR reporting by the public. [22]

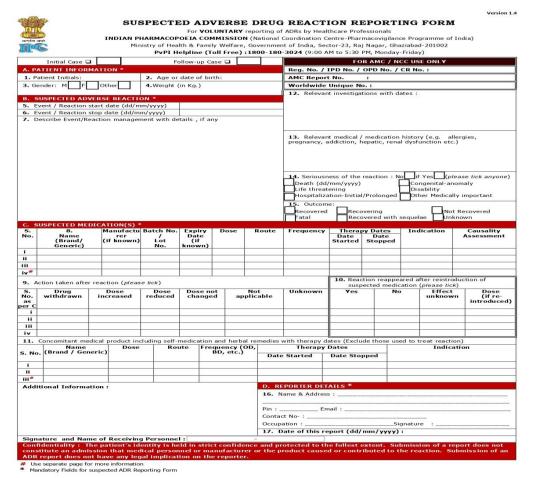


Figure 1: Suspected adverse drug reaction reporting form. [23]

www.wjpmr.com | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 238

Version 1.0

MEDICINES SIDE EFFECT REPORTING FORM (FOR CONSUMERS)

Indian Pharmacopoeia Commission, National Coordination Centre- Pharmacovigilance Programme of India, Ministry of Health & Family Welfare, Government of India.

This reporting is voluntary, has no legal implication and aims to improve patient safety. Your active participation is valuable. 1.Patient Details Patient Initials: Gender (v): Male Female Other Age (Year or Month): 2. Health Information a. Reason(s) for taking medicine(s)(Disease/Symptoms): b. Medicines Advised by (V): Doctor Pharmacist Friends/Relatives Self (Past disease experienced/No past disease experienced) 3. Details of Person Reporting the Side Effect Name (Optional): Address: Telephone No: Email: 4. Details of Medicine Taking/Taken Name of Medicines Quantity of Medicines taken (e.g. Expiry Date of Date of Start Date of Stop of 250 mg, Two times a day) Medicines of Medicines Medicines Dosage form (V): Tablet Capsule Injection Oral Liquids If Others (Please Specify....... 5. About the Side Effect When did the side effect started? Side Effect Continuing (Yes/No): When did the side effect stopped? 6. How bad was the Side Effect? (Please 1/ the boxes that Apply) Affect daily activities Did not affect daily activities Admitted to hospital Death Others 7.Describe the Side Effect (What did you do to manage the side effect?)

The information provided in this form will be forwarded to ADR Monitoring Centre for follow-up. You are requested to cooperate with the programme officials when they contact you for more details. Please do report if you do not have all the information.

Please turn the page to read the instructions

Figure 2: Medicines side effect reporting form for consumers. [24]

RESULTS

Research findings show that a significant number of healthcare professionals encounter ADRs but fail to report them due to limited knowledge of pharmacovigilance systems and inadequate training. However, the scope of pharmacovigilance has expanded greatly in recent years. It now includes not only spontaneous ADR reporting but also intensive

monitoring, database management, and the application of Al and predictive analytics for early detection of drug-related risks. Moreover, pharmacovigilance today covers herbal medicines, biologicals, vac cines, and medical devices, ensuring a more comprehensive approach to drug safety. Enhanced collaboration among regulatory authorities, pharmaceutical industries, and HCPs is contributing to a more proactive drug safety culture.

www.wjpmr.com | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 239

7. CONCLUSION

Effective pharmacovigilance is the cornerstone of safe and rational drug use. Strengthening the system requires increasing awareness and training among healthcare professionals, simplifying ADR reporting processes, and leveraging digital and analytical tools. As the scope of pharmacovigilance continues to broaden, it promises not only safer medications but also stronger healthcare systems and better patient outcomes worldwide.

8. REFERENCE

- 1. Beninger P. Pharmacovigilance: an overview. Clin Ther, 2018; 40(12): 1991-2004.
- 2. Meyboom RH, Egberts AC, Gribnau FW, Hekster YA. Pharmacovigilance in perspective. Drug Saf, 1999; 21(6): 429-47.
- 3. Härmark L, van Grootheest A. Pharmacovigilance: methods, recent developments and future perspectives. Eur J Clin Pharmacol, 2008; 64(8): 743-52.
- Talbot JC, Nilsson BS. Pharmacovigilance in the pharmaceutical industry. Br J Clin Pharmacol. 1998; 45(5): 427.
- 5. Pitts PJ, Le Louet H, Moride Y, Conti RM. 21st century pharmacovigilance: efforts, roles, and responsibilities. Lancet Oncol, 2016; 17(11): e486-92.
- Bihan K, Lebrun-Vignes B, Funck-Brentano C, Salem JE. Uses of pharmacovigilance databases: an overview. Ther Clin Risk Manag, 2020; 75(6): 591-8.
- 7. Livio F, Renard D, Buclin T. Pharmacovigilance. Rev Med Suisse, 2012; 8(324): 116-9.
- 8. Kalaiselvan V, Thota P, Singh GN. Pharmacovigilance Programme of India: recent developments and future perspectives. Indian J Pharmacol, 2016; 48(6): 624-8.
- 9. Suke SG, Kosta P, Negi H. Role of pharmacovigilance in India: an overview. Online J Public Health Inform, 2015; 7(2).
- Inácio P, Cavaco A, Airaksinen M. The value of patient reporting to the pharmacovigilance system: a systematic review. Br J Clin Pharmacol, 2017; 83(2): 227-46.
- 11. Trifirò G, Crisafulli S. A new era of pharmacovigilance: future challenges and opportunities. Front Drug Saf Regul, 2022; 2: 866898.
- 12. Kumar A. Pharmacovigilance: importance, concepts, and processes. Am J Health Syst Pharm, 2012; 74(8): 606-12.
- 13. Montastruc JL, Sommet A, Lacroix I, Olivier P, Durrieu G, Damase-Michel C, et al. Pharmacovigilance for evaluating adverse drug reactions: value, organization, and methods. Joint Bone Spine, 2006; 73(6): 629-32.
- 14. Pirmohamed M, Atuah KN, Dodoo AN, Winstanley P. Pharmacovigilance in developing countries. BMJ, 2007; 335(7618): 462.

- 15. Dal Pan GJ. Ongoing challenges in pharmacovigilance. Drug Saf, 2014; 37(1): 1-8.
- 16. Caron J, Rochoy M, Gaboriau L, Gautier S. Histoire de la pharmacovigilance. Ther Clin Risk Manag, 2016; 71(2): 123-8.
- 17. Jones JK, Kingery E. History of pharmacovigilance. In: Mann's pharmacovigilance. 2nd ed. Chichester: John Wiley & Sons, 2014; 11-24.
- 18. Coca JR, Coca-Asensio R, Esteban Bueno G. Sociohistorical analysis of the social importance of pharmacovigilance. Front Sociol, 2022; 7: 974090.
- 19. Al-Worafi YM. Pharmacovigilance. In: Drug safety in developing countries. London: Academic Press, 2020; p. 29-38.
- Rahman SZ, Galib R. History of pharmacovigilance in India (1983-2022). J Pharmacovigil Drug Saf. 2022; 6-17.
- Kushkiwala, A.M., Zankhwala, F.M., Patel, M.D. and Raval, A.M. (2024) 'Flurbiprofen loaded ethosomal gel: Design, optimization, and anti-inflammatory activity', International Journal of Research and Analytical Reviews (IJRAR), 11(4): pp. 709–713.
- 22. Mrs. Fayeja M. Zankhwala, Mr. Amar M. Raval, Ms. Asefabanu M. Kushkiwala, Mr. Sumit P. Sarvaiya, Ms. Komal K. Raval, Ms. Nikitabahen J. Thakar, Ms. Shilpa V. Barjod, Formulation and evaluation of optimized polymer blends for diclofenac diethylamine transdermal system. The Review of Diabetic Studies, 21(S9): 701–708.
- Kumar A. Pharmacovigilance: importance, concepts, and processes. Am J Health Syst Pharm, 2012; 74(8): 606-12.
- 24. Pansare K, Sonawane G, Tapadiya P, Tapadiya R, Patil C, Vaghela JS, Kokate S. History, current status and future aspects of pharmacovigilance in India. NVEO, 2021; 8: 1558-65.

240

www.wjpmr.com Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal