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1.  INTRODUCTION 

Gold nanoparticles (Au NPs) are emerging as efficient 

radiosensitizers and contrast agents in biomedical and 

cancer therapy. Leveraging kilovoltage cone-beam 

computed tomography, Au NPs enhance radiotherapy by 

improving dosage delivery and imaging capabilities.
[1,2]

 

Recent advances in nanomaterial synthesis have enabled 

precise control over particle characteristics such as size, 

shape, and surface chemistry, which enhances stability 

and functionality.
[3] 

 

Biocompatible coatings and functional ligands can be 

applied to Au NPs, allowing them to serve multiple roles 

including drug delivery, cancer therapy, and multimodal 

imaging. Au NPs offer unique advantages due to their 

optical properties, ease of synthesis, and chemical 

stability, making them suitable for a range of biomedical 

applications. They have been utilized in gold 

nanoparticle-based therapies, RNA and DNA delivery, 

and as contrast agents in imaging.
[4-6]

 

Despite their potential, it is crucial to thoroughly 

investigate their toxicity and health effects before 

widespread clinical use.
[8]

 In addition to Au NPs, various 

other nanomaterials such as liposomes, carbon 

nanotubes, and quantum dots are employed in 

biomedical fields.
[9]

 Au NPs, often referred to as ―potable 

gold,‖ are valued for their high x-ray absorption and 

localized surface plasmon resonance.
[16,17]

 Their utility in 

drug delivery can be influenced by factors like vascular 

characteristics and immune response, which affect drug 

accumulation and effectiveness.
[19]

 Advances in surface 

coating technology now allow for extensive 

functionalization of Au NPs, enhancing their role as 

therapeutic agents, molecular sensors, and delivery 

systems.
[20]

 Other nanomaterials like liposomes, carbon 

nanotubes, polymeric micelles, graphene, and quantum 

dots are also frequently utilized in biomedical 

applications.
[10]

 As NP-based technologies advance, 

human exposure to manufactured nanoparticles becomes 

more inevitable, making their benefits and characteristics 
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increasingly relevant.
[11,13]

 NPs, with their small size, 

high chemical reactivity, and large surface area, continue 

to be a focus of research for drug delivery and other 

applications.
[14]

 The historical use of Au NPs as ―potable 

gold‖ underscores their long-standing significance, and 

ongoing advancements are likely to expand their 

applications further.
[15,16] 

 

 
Figure 1: Representation of an Au NP for theranostics. 

 

2.  SYNTHESIS AND PROPERTIES 

Gold nanoparticles (Au NPs) are commonly synthesized 

using the colloidal approach, which allows precise 

control over size, shape, and optical properties by 

combining a reducing agent, a metal precursor, and a 

stabilizing agent.
[21,22] 

 

This method produces various nanostructures, including 

spheres, nanorods, and nanocages.
[23]

 Recent 

developments have introduced hollow Au NPs via 

galvanic replacement.
[24]

 and a one-pot method by Brust 

and Schiffrin for creating monolayer-protected Au NPs 

using tetrachloroaurate and sodium borohydride or 

citrate.
[25]

 The core size, ranging from 1.5 to 6 nm, is 

influenced by the ligand used, with larger sizes 

achievable through citrate reduction or ripening 

processes.
[26] 

The place exchange reaction is another 

technique for modifying ligand compositions on Au 

NPs.
[27]

 In medicinal applications, the bottom-up 

approach is favored, often using sodium citrate or 

sodium borohydride for reduction, and stabilizing agents 

like polyethyleneimine (PEI) are employed to prevent 

agglomeration.
[21,27]

 PEI facilitates nucleic acid delivery 

due to its amine groups.
[29]

 PEGylation, using 

 

polyethylene glycol (PEG), reduces the early removal of 

NPs from the bloodstream.
[31]

 while biomimetic 

modifications and conditional PEG removal offer 

alternative surface modification techniques.
[32,33] 

 

Different synthetic methods for Au and other metallic 

NPs include sol-gel micro reactors, acidic reduction, γ-

irradiation, and biosynthesis.
[21]

 Adjusting reducing 

agents or chloride ions in citrate reduction can vary Au 

NP sizes between 19 and 47 nm.
[34]

 Acidic stabilization 

and polymeric NPs, such as glutathione-capped Au NPs, 

enable further size control.
[35,36]

 Seed-mediated synthesis 

uses halides for surface passivation and growth 

regulation.
[37]

 and silver ions can alter particle 

morphologies.
[38]

 Gold silica nanoshells, made by seed-

mediated development, are used in imaging and targeted 

therapy, while gold nanorods offer adjustable near-

infrared absorption with high coefficients.
[39,40]

 Gold 

nanocages and hollow Au NPs are advantageous for 

photothermal applications due to their unique 

structures.
[41]

 Emerging technologies in Au NP synthesis, 

including stimuli-responsive designs, are enhancing their 

applications in cancer therapy and drug delivery.
[42] 

 

Type of NPs Synthetic Method NP Size (nm) 

Au Sol-gel micro reactors 5–50 

Au, Ag, Pd, Pt PVD into liquid substrate 2–10 

Pd, Pt Reduction in acidic environment 3–40 

Au Reduction process 2–40 

Au, Cu γ-Irradiation 3–30 

Cu pH control of Cu complexes 48–150 

Au, Ag, Pd Biosynthesis 9–25 

Ag Wet chemistry 20–60 

 

3. CELLULAR UPTAKE OF GOLD 

NANOPARTICLE AND CYTOTOXICITY 

Nanoparticles, with sizes comparable to biomolecules, 

can be tailored for specific biological interactions. Gold 

nanoparticles (Au NPs) modified with simian virus 40 

(SV40) nuclear localization signals are used for targeted 

nuclear delivery.
[43]

 Techniques such as using Tat 

peptides or mycobacterium-coated Au NPs enable entry 

into the cell nucleus and cytoplasm, respectively.
[44]

  

 

Surface functionalization is crucial for cellular uptake, 

influenced by ligand density and molecular weight, while 

Au NP size has minimal effect on uptake.
[45]

 Shape also 

affects cellular absorption, with triangular Au NPs being 
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more effective in RAW264.7 cells than rod-shaped or 

star-shaped NPs.
[46]

 Studies comparing hollow Au nano-

cages, nanorods, and plasmons with siRNA reveal that 

hollow Au nanoshells load more siRNA and have better 

gene silencing efficiency.
[47]

 Genotoxicity assessments of 

Au NPs ranging from 5 to 50 nm show that smaller 

particles can induce DNA damage and clastogenic 

effects, especially at 5 nm.
[48]

 Toxicity varies with size, 

cell type, and tissue interaction, with smaller Au NPs (1-

5 nm) exhibiting higher toxicity.
[50] 

Polyethylene glycol 

(PEG) coating enhances transfection efficacy and 

reduces toxicity.
[51,52]

 PEG-coated Au NPs show 

prolonged blood circulation and targeted delivery to the 

liver and spleen.
[54]

  

 

 
Figure 2: Cellular uptake of P-GNPs (A) and transmission electron microscopy images of RAW 264.7 after 24 h 

of incubation with P-GNSs (B), P-GNRs (C), P-GNTs (D). Data represent mean ± SEM (n = 3). Statistical 

significance is represented by * p < 0.05, ** p < 0.01, *** p < 0.001.
[46]

 Reproduced from reference.
[46]

 with 

Springer Nature under the Creative Commons Attribution 4.0 International License. 

  

Gold nanoparticles are also utilized to overcome 

multidrug resistance (MDR) in cancer therapy. Au NPs 

quench fluorescence efficiently, making them suitable 

for fluorescent nanoprobe applications. For instance, 

doxorubicin tethered to Au NPs via PEG improves 

drug delivery and efficacy against P-gp mediated drug 

resistance.
[55]

 Targeted delivery of siRNA using 

unimer polyion complex Au NPs and cyclic Arg-Gly-

Asp ligands enhances gene silencing in cancer cells.
[56] 

In liver cells, green Au NPs induce oxidative stress and 

DNA damage, with higher sensitivity observed in 

cancer cells.
[57]

 Plasma treatment can reduce Au NP 

size and enhance their cytotoxicity against cancer 

cells.
[58] 

 

Overall, Au NPs exhibit stable chemistry, minimal 

toxicity, and significant potential for biomedical 

applications. Further research is needed to optimize 

their uptake, toxicity, and therapeutic efficacy. 
 

4.  GOLD NANOPARTICLE BASED DRUG 

DELIVERY 

Nanomedicine, particularly with gold nanoparticles 

(Au NPs), shows promising clinical efficacy with 

enhanced therapeutic results and reduced toxicity. 

Although Au NP-based nano-drugs are not yet 

officially approved, research is actively exploring their 

potential, especially in cancer treatment and tumor 

targeting.
[59]

 Au NPs are effective carriers for a range 

of drugs, including peptides, pDNAs, proteins, small 

siRNAs, and chemotherapeutic agents. Their surface 

can be modified with functional groups like carboxyl, 

amine, or thiol to improve drug delivery and protect 

the drug from enzymatic degradation.
[60]

 Fucoidan, a 

bioactive polysaccharide, is used to synthesize Au 

NPs, enhancing biocompatibility and reducing toxicity 

compared to conventional methods.
[61]

 pH-sensitive 

medications, such as Morin encapsulated in Au NPs, 

show effectiveness in targeting acidic tumor 

environments and enhancing tumor apoptosis in mouse 

models.
[62]

 For bacterial infections, Au NPs improve 

drug delivery and effectiveness, especially when 

combined with antibiotics like gentamicin sulfate, 

which often suffers from poor membrane permeability 

and high solubility.
[64] 

Innovative delivery systems use 

Au NPs to encapsulate multiple drug molecules, 

allowing effective penetration into cells.
[65] 

Additionally, Au NPs combined with everolimus have 

shown promise in treating conditions like Bronchiolitis 

obliterans syndrome.
[66]

 Cyclic peptide-capped Au NPs 

offer enhanced drug delivery due to their ability to 

penetrate cell membranes and deliver therapeutic 

agents more efficiently.
[67]

 Recent advancements also 

include Au NP-based systems for fluorescence 

imaging and targeted drug delivery. For instance, Au 

NPs combined with platinum drugs and 

aminoanthraquinone demonstrate effective DNA 

binding and imaging capabilities.
[69]

 Au NPs are being 

explored for intraocular drug delivery, showing 

potential in treating retinal conditions.
[70]

 Moreover, 

cell membrane-coated Au NPs, such as those with 

platelet membranes, offer targeted cancer therapy 
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options.
[71]

, and doxorubicin-loaded Au NPs show 

promise in prostate cancer treatment.
[72]

 Testing in 

leukemia cells has also demonstrated encouraging 

results.
[73] 

 

4. 1. Plasmid Deoxynucleic Acids Vector (pDNAs) 

Delivery Gold nanoparticles (Au NPs) functionalized 

with DNA are increasingly used in drug delivery and 

biosensing due to their versatility and efficiency. The 

DNA-Au NP conjugate has shown effectiveness as a 

nano-carrier for drugs and genes, overcoming 

challenges such as nuclease degradation and blood 

serum interference.
[74]

 PEGylation of DNA strands 

attached to Au NPs can prevent random protein 

absorption and protect against DNase I degradation, 

thereby enhancing cellular uptake and efficiency.
[75] 

Recent advances have focused on functionalizing Au 

NPs with oligonucleotides through thiol modification, 

enabling the creation of complex nanostructures such 

as tetramers, trimers, and dimers. These structures 

offer stability and can perform multiplexed functions 

in biological settings, including targeting mRNA and 

delivering anticancer drugs.
[76] 

Additionally, 

amphiphilic coatings on Au NPs, such as pyridinium 

amphiphiles, improve plasmid DNA delivery by 

influencing NP shape and size, which affects cellular 

uptake and DNA compaction.
[77] 

Nanogels containing 

polymeric Au NPs offer a flexible delivery system, 

capable of encapsulating and releasing drugs with 

reduced cytotoxicity. Poly(N-isopropylacrylamide)-

based nanogels, for example, provide biocompatibility 

and temperature-responsive properties, allowing for 

controlled NP size changes.
[78][79] 

Liposomes, 

particularly those functionalized with DOTAP lipid, 

are also effective in gene and drug delivery, though 

PEG elimination from liposomes can be crucial for 

their efficacy.
[80]

 Further research has demonstrated the 

potential of Au NPs in gene targeting, such as blocking 

specific genes in cancer cells and using snake venom-

derived peptides like cotamine to facilitate DNA 

delivery.
[81][82]

 Au NPs functionalized with Y-type 

DNA have been developed for detecting telomerase 

and releasing anticancer agents in cancer cells, 

providing a novel approach for cancer treatment.
[83]

 

Additionally, NIR-sensitive nanoparticles that integrate 

PEG, DNA strands, and Au nanorods have been 

explored for thermo-chemotherapy, combining heat 

conversion with therapeutic DNA delivery.
[84] 

 

4. 2. Ribonucleic Acids (RNAs) Delivery 

Recent advancements have highlighted the potential of 

gold nanoparticles (Au NPs) in RNA delivery for HIV 

treatment and other applications. One approach 

involved PEGylated Au NPs with a covalent bond to 

thiol-modified oligoribonucleotides via a cleavable 

linker, N-succinimidyl 3-(2-puridyldithio) propionate 

(SPDP). The Au NPs were further coated with 

polyethyleneimine to enhance endosomal escape and 

cellular uptake. Anti-CD4 cyclic targeting peptides 

were attached to the Au NPs to improve selectivity and 

uptake in target cells. Each lymphocyte took up about 

45,000 RNA strands, showing potential for HIV 

therapy despite no antiviral activity being observed.
[85]

 

RNA interference (RNAi) for gene and cancer therapy 

has shown promise with functionalized Au nanorods 

used to deliver stable hairpin RNA. This approach 

effectively targets human brain cancer cells, utilizing 

disulfide-cross-linked cleavage for endosomal escape. 

The high intracellular glutathione levels enable rapid 

RNA release, and PEGylation ensures stability and 

prolonged circulation, enhancing tumor accumulation 

and gene silencing effectiveness in brain cells. 

Encouraging results were observed in tumor-bearing 

mice.
[86] 

Addressing the challenge of delivering drugs 

across the blood-brain barrier for glioblastoma, 

researchers explored nose-to-brain direct transport 

using gold-iron oxide nanoparticles. This approach 

incorporates microRNA for glioblastoma therapy and 

temozolomide delivery. The technique showed 

promising results in animal models, indicating its 

potential for clinical application.
[87] 

In the context of 

triple-negative breast cancer, multilayered NPs 

containing metastasis suppressor microRNA (miR780) 

were designed for targeted delivery to reduce lung 

metastases. In vivo experiments demonstrated the 

efficacy of this approach, suggesting it could improve 

clinical outcomes for this aggressive cancer type.
[88] 

For ovarian cancer, Au NPs have been used to deliver 

DNA, specifically examining the antitumor effects of 

DOX-DNA-Au NPs across three ovarian cancer cell 

lines: SK-OV-3, HEY A8, and A2780. The results 

from the EZ-Cytox cell viability assay indicated that 

DOX-DNA-Au NPs exhibit significant activity and 

could be a viable treatment option.
[89] 

 

4.3. Small Interfering Ribonucleic Acids (siRNAs) 

Delivery 

Small interfering RNAs (siRNAs) hold significant 

therapeutic promise, particularly in cancer treatment. 

Their efficacy is hindered by challenges such as 

instability and low cellular uptake. Gold nanoparticles 

(Au NPs) have emerged as effective vectors to address 

these issues. In glioblastoma therapy, Au NPs 

encapsulated with siRNA and modified with arginine-

glycine-aspartic (RGD) peptides demonstrated 

effective gene silencing and high transfection 

efficiency in U87MG cells. This was confirmed 

through flow cytometry, protein expression analysis, 

and confocal microscopy.
[91]

 For prostate cancer, a 

study utilized Au NPs coated with polyethyleneimine 

(PEI) and conjugated with anisamide-targeting ligands 

to deliver siRNA targeting the ReIA gene. This 

approach protected siRNA from degradation and 

enhanced gene silencing in PC3 prostate cancer cells, 

showing potential for therapeutic use.
[92] 

In melanoma, 

Au NPs co-delivering anti-STAT3 siRNA and imatinib 

mesylate achieved a significant reduction in tumor 

volume and weight, highlighting a promising strategy 

for targeting the STAT3 pathway.
[93] 

For breast cancer, 

particularly involving cancer stem cells (CSCs), Au 
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NPs assembled with a polymer complex and targeted 

with specific ligands delivered siRNA effectively, 

resulting in strong cellular uptake and significant gene 

knockdown in CSC-rich cultures. This approach shows 

potential for improving treatment outcomes by 

targeting CSCs.
[94]

 Additionally, Au NPs coated with 

HIV-1 TAT peptides were developed to deliver siRNA 

targeting the ROR1 antigen in breast cancer. This 

method demonstrated high cellular uptake and efficient 

gene transfection with low cytotoxicity, indicating its 

potential for treating invasive breast cancer.
[95] 

Overall, 

Au NPs offer advantages in drug delivery, including 

longer circulation half-life, better biocompatibility, and 

increased cellular uptake. Future research will focus on 

understanding their cytotoxicity and interactions with 

healthy cells. 

 

5. GOLD NANOPARTICLE BASED THEORY 

Photothermal therapy (PTT) represents a promising 

approach in cancer treatment, leveraging the ability of 

nanoparticles to convert light into heat for targeted 

tumor destruction. Gold nanoparticles (Au NPs) are 

particularly effective for PTT due to their excellent 

biocompatibility, ease of functionalization, small size 

for tumor penetration, and their efficient conversion of 

light, especially near-infrared (NIR) light, into heat. 

NIR light is advantageous because it penetrates deeper 

into tissues compared to other wavelengths, enhancing 

the effectiveness of PTT.
[96][97]

 Au NPs have shown 

potential in various applications, including localized 

heating and controlled drug delivery. Their ability to 

convert NIR light into heat allows for targeted 

hyperthermia, directly damaging or abating tumor 

cells.
[98]

 Additionally, in synergistic therapies, 

combining drug delivery with photothermal effects has 

yielded promising results in breast cancer models.
[99] 

 

Multifunctional Au NPs, such as Au nanostars, have 

been designed for enhanced Raman scattering (SERS) 

imaging and NIR-induced photothermal therapy. These 

nanostars cover broad NIR absorption bands and 

exhibit effective SERS activity and photothermal 

effects, making them versatile tools for cancer 

diagnosis and treatment.
[100]

 Hybrid systems 

incorporating Au NPs with heat-sensitive delivery 

mechanisms have also been developed. For example, 

hollow Au NPs have been used to deliver bupivacaine, 

demonstrating the potential for NIR-light-activated 

drug release and PTT applications.
[101]

 Similarly, NIR-

absorbing Au-Au sulfide NPs have shown enhanced 

tumor penetration and efficacy in photothermal cancer 

therapy, resulting in significant long-term tumor-free 

survival.
[102]

 In radiation therapy, Au NPs can act as 

dose boosters, increasing the destruction of cancer 

cells while minimizing damage to surrounding healthy 

tissue. Studies have shown that adding Au NPs to the 

radiation therapy can enhance dose escalation and 

improve treatment efficacy, with higher dose 

escalation factors (DER) observed in smaller tumors 

and with specific photon beam energies.
[1] 

 

 
Figure 3: Relationship of the DER and Au NP concentrations, varying with different prostate sizes in the 

phantom using the 6 MV (A) FFF and (B) FF photon beams. Au NPs with concentrations equal to 3, 7, 18, 30, 

and 40 mg/mL were used. The DER was calculated as the ratio of the target dose with NP addition to the target 

dose without NP addition.
[1]

 For skin cancer radiotherapy, the addition of Au NPs improves dose deposition and 

image contrast, with greater DER values achieved with lower photon beam energies and thinner lesions. In 

summary, Au NPs offer significant advantages in cancer therapy through their role in PTT, drug delivery, and 

radiation dose boosting. Their ability to enhance therapeutic outcomes and reduce side effects underscores the 

need for further research to optimize their application in clinical settings. 
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Figure 4: Relationship between the dose enhancement ratio and Au NP concentration with variation of the skin 

target thickness using the 105 (A) and 220 kVp (B) photon beams.
[103] 

 

6.  MOLECULAR NANOPROBES 
NPs interact with light and have a tuned surface plasmon 

resonance, which can be detected with several imaging 

modalities.
[104]

 Au NPs have the ability to accumulate in 

tumor cells. Their abilities to produce photoacoustic 

signals and photothermal effects are also very valuable in 

medical and diagnostic imaging.
[105]

 Au NPs have optical 

properties that are useful in biosensors in living cells. A 

surface plasmon resonance scattering image for Au NPs 

conjugated with anti-epidermal growth factor receptor 

(anti-EGFR) monoclonal antibodies in a non-malignant 

epithelial cell line (HaCAT) and two oral epithelial cell 

lines malignant (HOC 313 8 and HSC clone) has been 

studied. Antibody-conjugated NPs bind specifically and 

homogeneously to the surface of cancer cells with 600% 

higher affinity than non-cancer cells. This produces a 

sharper SPR absorption band with a red-shifted 

maximum compared to that of the non-cancerous cell. 

Diffusion images generated by these antibody-

conjugated gold nanoparticles are useful for 

diagnosis.
[106]

 Ultra-small gold nanoparticles less than 10 

nm in diameter have shown promise in the biomedical 

field. Their potential applications in cancer treatment and 

medical imaging have not been examined. Several 

systems based on ultra-small gold nanoparticles are 

under development for use in the diagnosis and treatment 

of cancer. Some applications in development includes 

the use of ultra-small gold nanoparticles for tumor 

visualization and bioimaging in various fields such as 

magnetic resonance imaging, fluorescence imaging, 

photoacoustic and X-ray scattering imaging. They are 

also studied in tumor chemotherapy, radiotherapy and 

gene therapy.
[107] 

 

7. CONCLUSION 
Gold nanoparticles have high potential in cancer therapy 

and drug delivery applications. Although gold 

nanoparticles are not widely used for clinical 

applications, research on gold nanoparticle drug delivery, 

gene therapy, photothermal therapy, and radiation 

therapy all show promising results and are shown to be 

potentially viable solutions in the future. Based on the 

promising results obtained in the present and the 

progress expected in the future, it is certain that gold 

nanoparticles will continue to play an important role in 

improving the biomedical field, especially in drug 

delivery and anticancer therapy. However, some 

limitations in the application of gold nanoparticles as 

nanocarriers or radiosensitizers, such as cytotoxicity, 

non-biodegradability and modulation of cellular 

responses, should not be overlooked and should be 

studied in detail. 
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